Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344767525> ?p ?o ?g. }
- W2344767525 endingPage "290" @default.
- W2344767525 startingPage "275" @default.
- W2344767525 abstract "CR Climate Research Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials CR 64:275-290 (2015) - DOI: https://doi.org/10.3354/cr01320 Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan Ryuhei Yoshida1,6,*, Shin Fukui2,3, Teruhisa Shimada4, Toshihiro Hasegawa2, Yasushi Ishigooka2, Izuru Takayabu5, Toshiki Iwasaki1 1Graduate School of Science, Tohoku University, Sendai 980-8578, Japan 2Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan 3Faculty of Human Sciences, Waseda Univeristy, Tokorozawa 359-1192, Japan 4Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan 5Meteorological Research Institute, Tsukuba 305-0052, Japan6Present address: Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan *Corresponding author: yoshida@sss.fukushima-u.ac.jp ABSTRACT: As surface warming threatens rice production in temperate climates, the importance of cool regions is increasing. Cultivar choice is an important adaptation option for coping with climate change but is generally evaluated with a single metric for a few hypothetical cultivars. Here, we evaluate adaptation to climate change based on multiple metrics and cultivars in presently cool climates in Japan. We applied the outputs of a global climate model (MIROC5) with a Representative Concentration Pathways 4.5 scenario, dynamically downscaled to a 10 km mesh for the present (1981-2000) and future (2081-2099) climate conditions. The data were input into a rice-growth model, and the performances of 10 major cultivars were compared in each mesh. With the present-day leading cultivars, the model predicted reduced low-temperature stress, a regional average yield increase of 17%, and several occurrences of high-temperature stress. The most suitable cultivars in each grid cell changed dramatically because of climate change when a single metric was used as a criterion, and the yield advantage increased to 26%. When yield, cold, and heat stress were taken into account, however, the currently leading cultivars maintained superiority in 64% of the grid cells, with an average regional yield gain of 22%, suggesting a requirement for developing new cultivars by pyramiding useful traits. A trait such as low sensitivity to temperature for phenology helps in ensuring stable growth under variable temperatures. Increasing photoperiod sensitivity can be an option under future climates in relatively warmer regions. KEY WORDS: Rice cultivar · Yield · High-temperature stress · Low-temperature stress · Climate change Full text in pdf format PreviousCite this article as: Yoshida R, Fukui S, Shimada T, Hasegawa T, Ishigooka Y, Takayabu I, Iwasaki T (2015) Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan. Clim Res 64:275-290. https://doi.org/10.3354/cr01320Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in CR Vol. 64, No. 3. Online publication date: August 31, 2015 Print ISSN: 0936-577X; Online ISSN: 1616-1572 Copyright © 2015 Inter-Research." @default.
- W2344767525 created "2016-06-24" @default.
- W2344767525 creator A5011661849 @default.
- W2344767525 creator A5028289180 @default.
- W2344767525 creator A5066629865 @default.
- W2344767525 creator A5075179652 @default.
- W2344767525 creator A5077287129 @default.
- W2344767525 creator A5079701832 @default.
- W2344767525 creator A5087012159 @default.
- W2344767525 date "2015-08-31" @default.
- W2344767525 modified "2023-10-02" @default.
- W2344767525 title "Adaptation of rice to climate change through a cultivar-based simulation: a possible cultivar shift in eastern Japan" @default.
- W2344767525 cites W1465056966 @default.
- W2344767525 cites W1548802581 @default.
- W2344767525 cites W1634020409 @default.
- W2344767525 cites W1862316956 @default.
- W2344767525 cites W1964117383 @default.
- W2344767525 cites W1973052428 @default.
- W2344767525 cites W1975827058 @default.
- W2344767525 cites W1979566020 @default.
- W2344767525 cites W2003089815 @default.
- W2344767525 cites W2006750690 @default.
- W2344767525 cites W2016903804 @default.
- W2344767525 cites W2020145794 @default.
- W2344767525 cites W2022085144 @default.
- W2344767525 cites W2027699912 @default.
- W2344767525 cites W2029074727 @default.
- W2344767525 cites W2035531186 @default.
- W2344767525 cites W2046857879 @default.
- W2344767525 cites W2049610056 @default.
- W2344767525 cites W2053001098 @default.
- W2344767525 cites W2054102269 @default.
- W2344767525 cites W2054337755 @default.
- W2344767525 cites W2060074063 @default.
- W2344767525 cites W2060700691 @default.
- W2344767525 cites W2063563722 @default.
- W2344767525 cites W2071185283 @default.
- W2344767525 cites W2074357630 @default.
- W2344767525 cites W2074819675 @default.
- W2344767525 cites W2083745674 @default.
- W2344767525 cites W2095394922 @default.
- W2344767525 cites W2098122364 @default.
- W2344767525 cites W2105117295 @default.
- W2344767525 cites W2118921617 @default.
- W2344767525 cites W2130201759 @default.
- W2344767525 cites W2130622714 @default.
- W2344767525 cites W2134598800 @default.
- W2344767525 cites W2135349158 @default.
- W2344767525 cites W2142794782 @default.
- W2344767525 cites W2146709000 @default.
- W2344767525 cites W2159229729 @default.
- W2344767525 cites W2171984413 @default.
- W2344767525 cites W2190007635 @default.
- W2344767525 cites W23030463 @default.
- W2344767525 cites W2318202257 @default.
- W2344767525 cites W2395166558 @default.
- W2344767525 cites W2395401125 @default.
- W2344767525 cites W1573527764 @default.
- W2344767525 doi "https://doi.org/10.3354/cr01320" @default.
- W2344767525 hasPublicationYear "2015" @default.
- W2344767525 type Work @default.
- W2344767525 sameAs 2344767525 @default.
- W2344767525 citedByCount "16" @default.
- W2344767525 countsByYear W23447675252016 @default.
- W2344767525 countsByYear W23447675252017 @default.
- W2344767525 countsByYear W23447675252019 @default.
- W2344767525 countsByYear W23447675252020 @default.
- W2344767525 countsByYear W23447675252021 @default.
- W2344767525 countsByYear W23447675252022 @default.
- W2344767525 countsByYear W23447675252023 @default.
- W2344767525 crossrefType "journal-article" @default.
- W2344767525 hasAuthorship W2344767525A5011661849 @default.
- W2344767525 hasAuthorship W2344767525A5028289180 @default.
- W2344767525 hasAuthorship W2344767525A5066629865 @default.
- W2344767525 hasAuthorship W2344767525A5075179652 @default.
- W2344767525 hasAuthorship W2344767525A5077287129 @default.
- W2344767525 hasAuthorship W2344767525A5079701832 @default.
- W2344767525 hasAuthorship W2344767525A5087012159 @default.
- W2344767525 hasBestOaLocation W23447675251 @default.
- W2344767525 hasConcept C132651083 @default.
- W2344767525 hasConcept C144027150 @default.
- W2344767525 hasConcept C18903297 @default.
- W2344767525 hasConcept C197321923 @default.
- W2344767525 hasConcept C205649164 @default.
- W2344767525 hasConcept C39432304 @default.
- W2344767525 hasConcept C81461190 @default.
- W2344767525 hasConcept C86803240 @default.
- W2344767525 hasConceptScore W2344767525C132651083 @default.
- W2344767525 hasConceptScore W2344767525C144027150 @default.
- W2344767525 hasConceptScore W2344767525C18903297 @default.
- W2344767525 hasConceptScore W2344767525C197321923 @default.
- W2344767525 hasConceptScore W2344767525C205649164 @default.
- W2344767525 hasConceptScore W2344767525C39432304 @default.
- W2344767525 hasConceptScore W2344767525C81461190 @default.
- W2344767525 hasConceptScore W2344767525C86803240 @default.
- W2344767525 hasIssue "3" @default.
- W2344767525 hasLocation W23447675251 @default.
- W2344767525 hasOpenAccess W2344767525 @default.