Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344928707> ?p ?o ?g. }
- W2344928707 abstract "In this age of technology, building quality software is essential to competing in the business market. One of the major principles required for any quality and business software product for value fulfillment is reliability. Estimating software reliability early during the software development life cycle saves time and money as it prevents spending larger sums fixing a defective software product after deployment. The Software Reliability Growth Model (SRGM) can be used to predict the number of failures that may be encountered during the software testing process. In this paper we explore the advantages of the Grey Wolf Optimization (GWO) algorithm in estimating the SRGM’s parameters with the objective of minimizing the difference between the estimated and the actual number of failures of the software system. We evaluated three different software reliability growth models: the Exponential Model (EXPM), the Power Model (POWM) and the Delayed S-Shaped Model (DSSM). In addition, we used three different datasets to conduct an experimental study in order to show the effectiveness of our approach." @default.
- W2344928707 created "2016-06-24" @default.
- W2344928707 creator A5012742956 @default.
- W2344928707 creator A5084018892 @default.
- W2344928707 date "2016-01-01" @default.
- W2344928707 modified "2023-09-27" @default.
- W2344928707 title "Estimating the Parameters of Software Reliability Growth Models Using the Grey Wolf Optimization Algorithm" @default.
- W2344928707 cites W1482796962 @default.
- W2344928707 cites W1512726605 @default.
- W2344928707 cites W1520035576 @default.
- W2344928707 cites W1554758995 @default.
- W2344928707 cites W1587931620 @default.
- W2344928707 cites W1881520273 @default.
- W2344928707 cites W1966017250 @default.
- W2344928707 cites W1969726746 @default.
- W2344928707 cites W1978897602 @default.
- W2344928707 cites W1980539682 @default.
- W2344928707 cites W1985258194 @default.
- W2344928707 cites W2002302337 @default.
- W2344928707 cites W2008810558 @default.
- W2344928707 cites W201807401 @default.
- W2344928707 cites W2038523443 @default.
- W2344928707 cites W2061438946 @default.
- W2344928707 cites W2071427291 @default.
- W2344928707 cites W2072865433 @default.
- W2344928707 cites W2081503608 @default.
- W2344928707 cites W2084150660 @default.
- W2344928707 cites W2095696918 @default.
- W2344928707 cites W2101728371 @default.
- W2344928707 cites W2104615423 @default.
- W2344928707 cites W2107975649 @default.
- W2344928707 cites W2108547965 @default.
- W2344928707 cites W2117039703 @default.
- W2344928707 cites W2128407881 @default.
- W2344928707 cites W2139462772 @default.
- W2344928707 cites W2142692926 @default.
- W2344928707 cites W2144556677 @default.
- W2344928707 cites W2157657084 @default.
- W2344928707 cites W2169315263 @default.
- W2344928707 cites W2199270592 @default.
- W2344928707 cites W2248981713 @default.
- W2344928707 cites W2407003788 @default.
- W2344928707 cites W2475212356 @default.
- W2344928707 cites W2914956942 @default.
- W2344928707 cites W2963302548 @default.
- W2344928707 cites W373447073 @default.
- W2344928707 cites W59473092 @default.
- W2344928707 cites W73289055 @default.
- W2344928707 cites W2067608966 @default.
- W2344928707 cites W43897323 @default.
- W2344928707 doi "https://doi.org/10.14569/ijacsa.2016.070465" @default.
- W2344928707 hasPublicationYear "2016" @default.
- W2344928707 type Work @default.
- W2344928707 sameAs 2344928707 @default.
- W2344928707 citedByCount "5" @default.
- W2344928707 countsByYear W23449287072017 @default.
- W2344928707 countsByYear W23449287072018 @default.
- W2344928707 countsByYear W23449287072022 @default.
- W2344928707 countsByYear W23449287072023 @default.
- W2344928707 crossrefType "journal-article" @default.
- W2344928707 hasAuthorship W2344928707A5012742956 @default.
- W2344928707 hasAuthorship W2344928707A5084018892 @default.
- W2344928707 hasBestOaLocation W23449287071 @default.
- W2344928707 hasConcept C105339364 @default.
- W2344928707 hasConcept C111472728 @default.
- W2344928707 hasConcept C11413529 @default.
- W2344928707 hasConcept C115903868 @default.
- W2344928707 hasConcept C117447612 @default.
- W2344928707 hasConcept C121332964 @default.
- W2344928707 hasConcept C127413603 @default.
- W2344928707 hasConcept C138885662 @default.
- W2344928707 hasConcept C163258240 @default.
- W2344928707 hasConcept C186846655 @default.
- W2344928707 hasConcept C199360897 @default.
- W2344928707 hasConcept C200601418 @default.
- W2344928707 hasConcept C201515116 @default.
- W2344928707 hasConcept C2777904410 @default.
- W2344928707 hasConcept C2779530757 @default.
- W2344928707 hasConcept C41008148 @default.
- W2344928707 hasConcept C43214815 @default.
- W2344928707 hasConcept C529173508 @default.
- W2344928707 hasConcept C52928878 @default.
- W2344928707 hasConcept C62520636 @default.
- W2344928707 hasConcept C82214349 @default.
- W2344928707 hasConceptScore W2344928707C105339364 @default.
- W2344928707 hasConceptScore W2344928707C111472728 @default.
- W2344928707 hasConceptScore W2344928707C11413529 @default.
- W2344928707 hasConceptScore W2344928707C115903868 @default.
- W2344928707 hasConceptScore W2344928707C117447612 @default.
- W2344928707 hasConceptScore W2344928707C121332964 @default.
- W2344928707 hasConceptScore W2344928707C127413603 @default.
- W2344928707 hasConceptScore W2344928707C138885662 @default.
- W2344928707 hasConceptScore W2344928707C163258240 @default.
- W2344928707 hasConceptScore W2344928707C186846655 @default.
- W2344928707 hasConceptScore W2344928707C199360897 @default.
- W2344928707 hasConceptScore W2344928707C200601418 @default.
- W2344928707 hasConceptScore W2344928707C201515116 @default.
- W2344928707 hasConceptScore W2344928707C2777904410 @default.
- W2344928707 hasConceptScore W2344928707C2779530757 @default.
- W2344928707 hasConceptScore W2344928707C41008148 @default.