Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344962866> ?p ?o ?g. }
- W2344962866 endingPage "2582" @default.
- W2344962866 startingPage "2574" @default.
- W2344962866 abstract "It is sometimes challenging to plan winter maintenance operations in advance because snow storms are stochastic with respect to, e.g., start time, duration, impact area, and severity. In addition, maintenance trucks may not be readily available at all times due to stochastic service disruptions. A stochastic dynamic fleet management model is developed to assign available trucks to cover uncertain snow plowing demand. The objective is to simultaneously minimize the cost for truck deadheading and repositioning, as well as to maximize the benefits (i.e., level of service) of plowing. The problem is formulated into a dynamic programming model and solved using an approximate dynamic programming algorithm. Piecewise linear functional approximations are used to estimate the value function of system states (i.e., snow plow trucks location over time). We apply our model and solution approach to a snow plow operation scenario for Lake County, Illinois. Numerical results show that the proposed algorithm can solve the problem effectively and outperforms a rolling-horizon heuristic solution." @default.
- W2344962866 created "2016-06-24" @default.
- W2344962866 creator A5004516348 @default.
- W2344962866 creator A5084635125 @default.
- W2344962866 date "2016-09-01" @default.
- W2344962866 modified "2023-10-18" @default.
- W2344962866 title "Dynamic Snow Plow Fleet Management Under Uncertain Demand and Service Disruption" @default.
- W2344962866 cites W1504817004 @default.
- W2344962866 cites W1569990960 @default.
- W2344962866 cites W1966197373 @default.
- W2344962866 cites W1969007958 @default.
- W2344962866 cites W1990482617 @default.
- W2344962866 cites W2019710194 @default.
- W2344962866 cites W2031236641 @default.
- W2344962866 cites W2040358553 @default.
- W2344962866 cites W2045207845 @default.
- W2344962866 cites W2062245133 @default.
- W2344962866 cites W2066135070 @default.
- W2344962866 cites W2076355050 @default.
- W2344962866 cites W2079725666 @default.
- W2344962866 cites W2084213398 @default.
- W2344962866 cites W2085495522 @default.
- W2344962866 cites W2091932422 @default.
- W2344962866 cites W2109191620 @default.
- W2344962866 cites W2110160584 @default.
- W2344962866 cites W2113025491 @default.
- W2344962866 cites W2131275311 @default.
- W2344962866 cites W2132388847 @default.
- W2344962866 cites W2132632316 @default.
- W2344962866 cites W2138810186 @default.
- W2344962866 cites W2139295133 @default.
- W2344962866 cites W2147107304 @default.
- W2344962866 cites W2147111279 @default.
- W2344962866 cites W21526160 @default.
- W2344962866 cites W2159448554 @default.
- W2344962866 cites W2164674071 @default.
- W2344962866 cites W2167115653 @default.
- W2344962866 cites W2169441485 @default.
- W2344962866 cites W2798344481 @default.
- W2344962866 cites W4241918052 @default.
- W2344962866 cites W4251495539 @default.
- W2344962866 doi "https://doi.org/10.1109/tits.2016.2520918" @default.
- W2344962866 hasPublicationYear "2016" @default.
- W2344962866 type Work @default.
- W2344962866 sameAs 2344962866 @default.
- W2344962866 citedByCount "26" @default.
- W2344962866 countsByYear W23449628662017 @default.
- W2344962866 countsByYear W23449628662018 @default.
- W2344962866 countsByYear W23449628662019 @default.
- W2344962866 countsByYear W23449628662020 @default.
- W2344962866 countsByYear W23449628662021 @default.
- W2344962866 countsByYear W23449628662022 @default.
- W2344962866 countsByYear W23449628662023 @default.
- W2344962866 crossrefType "journal-article" @default.
- W2344962866 hasAuthorship W2344962866A5004516348 @default.
- W2344962866 hasAuthorship W2344962866A5084635125 @default.
- W2344962866 hasBestOaLocation W23449628661 @default.
- W2344962866 hasConcept C11413529 @default.
- W2344962866 hasConcept C121332964 @default.
- W2344962866 hasConcept C126255220 @default.
- W2344962866 hasConcept C127413603 @default.
- W2344962866 hasConcept C134306372 @default.
- W2344962866 hasConcept C136264566 @default.
- W2344962866 hasConcept C137631369 @default.
- W2344962866 hasConcept C153294291 @default.
- W2344962866 hasConcept C162324750 @default.
- W2344962866 hasConcept C164660894 @default.
- W2344962866 hasConcept C171146098 @default.
- W2344962866 hasConcept C197046000 @default.
- W2344962866 hasConcept C2777305159 @default.
- W2344962866 hasConcept C2780378061 @default.
- W2344962866 hasConcept C2781290007 @default.
- W2344962866 hasConcept C28761237 @default.
- W2344962866 hasConcept C33923547 @default.
- W2344962866 hasConcept C37404715 @default.
- W2344962866 hasConcept C41008148 @default.
- W2344962866 hasConcept C42475967 @default.
- W2344962866 hasConcept C44154836 @default.
- W2344962866 hasConcept C52121051 @default.
- W2344962866 hasConcept C76155785 @default.
- W2344962866 hasConceptScore W2344962866C11413529 @default.
- W2344962866 hasConceptScore W2344962866C121332964 @default.
- W2344962866 hasConceptScore W2344962866C126255220 @default.
- W2344962866 hasConceptScore W2344962866C127413603 @default.
- W2344962866 hasConceptScore W2344962866C134306372 @default.
- W2344962866 hasConceptScore W2344962866C136264566 @default.
- W2344962866 hasConceptScore W2344962866C137631369 @default.
- W2344962866 hasConceptScore W2344962866C153294291 @default.
- W2344962866 hasConceptScore W2344962866C162324750 @default.
- W2344962866 hasConceptScore W2344962866C164660894 @default.
- W2344962866 hasConceptScore W2344962866C171146098 @default.
- W2344962866 hasConceptScore W2344962866C197046000 @default.
- W2344962866 hasConceptScore W2344962866C2777305159 @default.
- W2344962866 hasConceptScore W2344962866C2780378061 @default.
- W2344962866 hasConceptScore W2344962866C2781290007 @default.
- W2344962866 hasConceptScore W2344962866C28761237 @default.
- W2344962866 hasConceptScore W2344962866C33923547 @default.
- W2344962866 hasConceptScore W2344962866C37404715 @default.