Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345060527> ?p ?o ?g. }
- W2345060527 endingPage "78" @default.
- W2345060527 startingPage "63" @default.
- W2345060527 abstract "The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1—dog1, bird2—dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1—dog_picture1, bird_picture2—dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual objects) and suggests that, at least with the current categories and type of learner, there are biases to pick up on statistical regularities between individual objects even when robust statistical information is present at other levels of abstraction. These findings speak directly to emerging theories about how systems supporting statistical learning and prediction operate in our structure-rich environments. Moreover, the theoretical implications of the current work across multiple domains of study is already clear: statistical learning cannot be assumed to be unconstrained even if statistical learning has previously been established at a given level of abstraction when that information is presented in isolation." @default.
- W2345060527 created "2016-06-24" @default.
- W2345060527 creator A5043372796 @default.
- W2345060527 creator A5062211806 @default.
- W2345060527 date "2016-08-01" @default.
- W2345060527 modified "2023-09-25" @default.
- W2345060527 title "Statistical learning is constrained to less abstract patterns in complex sensory input (but not the least)" @default.
- W2345060527 cites W1500689260 @default.
- W2345060527 cites W1591395504 @default.
- W2345060527 cites W1965046396 @default.
- W2345060527 cites W1966342514 @default.
- W2345060527 cites W1977029213 @default.
- W2345060527 cites W1979539191 @default.
- W2345060527 cites W1980064688 @default.
- W2345060527 cites W1980862600 @default.
- W2345060527 cites W1984588653 @default.
- W2345060527 cites W1991926550 @default.
- W2345060527 cites W1993984071 @default.
- W2345060527 cites W2002691052 @default.
- W2345060527 cites W2006335560 @default.
- W2345060527 cites W2007653981 @default.
- W2345060527 cites W2011066312 @default.
- W2345060527 cites W2013567601 @default.
- W2345060527 cites W2020943857 @default.
- W2345060527 cites W2025091063 @default.
- W2345060527 cites W2040181316 @default.
- W2345060527 cites W2042938519 @default.
- W2345060527 cites W2050593036 @default.
- W2345060527 cites W2051215923 @default.
- W2345060527 cites W2059799772 @default.
- W2345060527 cites W2068063159 @default.
- W2345060527 cites W2083270362 @default.
- W2345060527 cites W2084960727 @default.
- W2345060527 cites W2099479929 @default.
- W2345060527 cites W2100151927 @default.
- W2345060527 cites W2107135123 @default.
- W2345060527 cites W2107390551 @default.
- W2345060527 cites W2110933002 @default.
- W2345060527 cites W2113583161 @default.
- W2345060527 cites W2115676631 @default.
- W2345060527 cites W2117726420 @default.
- W2345060527 cites W2125510339 @default.
- W2345060527 cites W2125816069 @default.
- W2345060527 cites W2127848657 @default.
- W2345060527 cites W2127958135 @default.
- W2345060527 cites W2132573777 @default.
- W2345060527 cites W2136401406 @default.
- W2345060527 cites W2140015046 @default.
- W2345060527 cites W2142978433 @default.
- W2345060527 cites W2143712912 @default.
- W2345060527 cites W2146848877 @default.
- W2345060527 cites W2147832298 @default.
- W2345060527 cites W2151834591 @default.
- W2345060527 cites W2153791616 @default.
- W2345060527 cites W2157394445 @default.
- W2345060527 cites W2159265825 @default.
- W2345060527 cites W2170919319 @default.
- W2345060527 cites W2175523146 @default.
- W2345060527 cites W2325526696 @default.
- W2345060527 cites W4236476023 @default.
- W2345060527 cites W4246163452 @default.
- W2345060527 cites W820728870 @default.
- W2345060527 doi "https://doi.org/10.1016/j.cognition.2016.04.010" @default.
- W2345060527 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4905776" @default.
- W2345060527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27139779" @default.
- W2345060527 hasPublicationYear "2016" @default.
- W2345060527 type Work @default.
- W2345060527 sameAs 2345060527 @default.
- W2345060527 citedByCount "21" @default.
- W2345060527 countsByYear W23450605272016 @default.
- W2345060527 countsByYear W23450605272017 @default.
- W2345060527 countsByYear W23450605272018 @default.
- W2345060527 countsByYear W23450605272019 @default.
- W2345060527 countsByYear W23450605272020 @default.
- W2345060527 countsByYear W23450605272021 @default.
- W2345060527 countsByYear W23450605272022 @default.
- W2345060527 countsByYear W23450605272023 @default.
- W2345060527 crossrefType "journal-article" @default.
- W2345060527 hasAuthorship W2345060527A5043372796 @default.
- W2345060527 hasAuthorship W2345060527A5062211806 @default.
- W2345060527 hasBestOaLocation W23450605272 @default.
- W2345060527 hasConcept C111472728 @default.
- W2345060527 hasConcept C124304363 @default.
- W2345060527 hasConcept C138885662 @default.
- W2345060527 hasConcept C154945302 @default.
- W2345060527 hasConcept C15744967 @default.
- W2345060527 hasConcept C169760540 @default.
- W2345060527 hasConcept C169900460 @default.
- W2345060527 hasConcept C180747234 @default.
- W2345060527 hasConcept C188147891 @default.
- W2345060527 hasConcept C199360897 @default.
- W2345060527 hasConcept C26760741 @default.
- W2345060527 hasConcept C2779918689 @default.
- W2345060527 hasConcept C2781238097 @default.
- W2345060527 hasConcept C2982736386 @default.
- W2345060527 hasConcept C41008148 @default.
- W2345060527 hasConcept C511192102 @default.
- W2345060527 hasConceptScore W2345060527C111472728 @default.