Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345075033> ?p ?o ?g. }
- W2345075033 endingPage "2729" @default.
- W2345075033 startingPage "2718" @default.
- W2345075033 abstract "In this brief, an enhanced genetic back-propagation neural network with link switches (EGA-BPNN-LS) is proposed to address a data-driven modeling problem for gasification processes inside United Gas Improvement (UGI) gasifiers. The online-measured temperature of crude gas produced during the gasification processes plays a dominant role in the syngas industry; however, it is difficult to model temperature dynamics via first principles due to the practical complexity of the gasification process, especially as reflected by severe changes in the gas temperature resulting from infrequent manipulations of the gasifier in practice. The proposed data-driven modeling approach, EGA-BPNN-LS, incorporates an NN-LS, an EGA, and the Levenberg-Marquardt (LM) algorithm. The approach cannot only learn the relationships between the control input and the system output from historical data using an optimized network structure through a combination of EGA and NN-LS but also makes use of the networks gradient information via the LM algorithm. EGA-BPNN-LS is applied to a set of data collected from the field to model the UGI gasification processes, and the effectiveness of EGA-BPNN-LS is verified." @default.
- W2345075033 created "2016-06-24" @default.
- W2345075033 creator A5000057250 @default.
- W2345075033 creator A5076325541 @default.
- W2345075033 creator A5082706113 @default.
- W2345075033 date "2016-12-01" @default.
- W2345075033 modified "2023-10-16" @default.
- W2345075033 title "Data-Driven Modeling for UGI Gasification Processes via an Enhanced Genetic BP Neural Network With Link Switches" @default.
- W2345075033 cites W1505789435 @default.
- W2345075033 cites W1991611930 @default.
- W2345075033 cites W1993271074 @default.
- W2345075033 cites W1994787532 @default.
- W2345075033 cites W1997600725 @default.
- W2345075033 cites W1999213690 @default.
- W2345075033 cites W2005950755 @default.
- W2345075033 cites W2018253022 @default.
- W2345075033 cites W2022663638 @default.
- W2345075033 cites W2024127616 @default.
- W2345075033 cites W2026484107 @default.
- W2345075033 cites W2033810301 @default.
- W2345075033 cites W2035539931 @default.
- W2345075033 cites W2040871222 @default.
- W2345075033 cites W2046904226 @default.
- W2345075033 cites W2053851232 @default.
- W2345075033 cites W2058986669 @default.
- W2345075033 cites W2060686658 @default.
- W2345075033 cites W2066056986 @default.
- W2345075033 cites W2072776692 @default.
- W2345075033 cites W2077826871 @default.
- W2345075033 cites W2085421387 @default.
- W2345075033 cites W2088809735 @default.
- W2345075033 cites W2090017254 @default.
- W2345075033 cites W2092203414 @default.
- W2345075033 cites W2093123137 @default.
- W2345075033 cites W2095313828 @default.
- W2345075033 cites W2097156392 @default.
- W2345075033 cites W2108604074 @default.
- W2345075033 cites W2112061072 @default.
- W2345075033 cites W2112539822 @default.
- W2345075033 cites W2114053544 @default.
- W2345075033 cites W2126939654 @default.
- W2345075033 cites W2133764509 @default.
- W2345075033 cites W2138784882 @default.
- W2345075033 cites W2157080539 @default.
- W2345075033 cites W2164679752 @default.
- W2345075033 cites W2168309003 @default.
- W2345075033 doi "https://doi.org/10.1109/tnnls.2015.2491325" @default.
- W2345075033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26561485" @default.
- W2345075033 hasPublicationYear "2016" @default.
- W2345075033 type Work @default.
- W2345075033 sameAs 2345075033 @default.
- W2345075033 citedByCount "25" @default.
- W2345075033 countsByYear W23450750332017 @default.
- W2345075033 countsByYear W23450750332018 @default.
- W2345075033 countsByYear W23450750332019 @default.
- W2345075033 countsByYear W23450750332020 @default.
- W2345075033 countsByYear W23450750332021 @default.
- W2345075033 countsByYear W23450750332022 @default.
- W2345075033 countsByYear W23450750332023 @default.
- W2345075033 crossrefType "journal-article" @default.
- W2345075033 hasAuthorship W2345075033A5000057250 @default.
- W2345075033 hasAuthorship W2345075033A5076325541 @default.
- W2345075033 hasAuthorship W2345075033A5082706113 @default.
- W2345075033 hasConcept C111919701 @default.
- W2345075033 hasConcept C119857082 @default.
- W2345075033 hasConcept C124101348 @default.
- W2345075033 hasConcept C127413603 @default.
- W2345075033 hasConcept C15229330 @default.
- W2345075033 hasConcept C154945302 @default.
- W2345075033 hasConcept C155032097 @default.
- W2345075033 hasConcept C177264268 @default.
- W2345075033 hasConcept C178790620 @default.
- W2345075033 hasConcept C185592680 @default.
- W2345075033 hasConcept C194439259 @default.
- W2345075033 hasConcept C199360897 @default.
- W2345075033 hasConcept C202444582 @default.
- W2345075033 hasConcept C21880701 @default.
- W2345075033 hasConcept C33923547 @default.
- W2345075033 hasConcept C41008148 @default.
- W2345075033 hasConcept C50644808 @default.
- W2345075033 hasConcept C512968161 @default.
- W2345075033 hasConcept C518851703 @default.
- W2345075033 hasConcept C548081761 @default.
- W2345075033 hasConcept C8880873 @default.
- W2345075033 hasConcept C9652623 @default.
- W2345075033 hasConcept C98045186 @default.
- W2345075033 hasConceptScore W2345075033C111919701 @default.
- W2345075033 hasConceptScore W2345075033C119857082 @default.
- W2345075033 hasConceptScore W2345075033C124101348 @default.
- W2345075033 hasConceptScore W2345075033C127413603 @default.
- W2345075033 hasConceptScore W2345075033C15229330 @default.
- W2345075033 hasConceptScore W2345075033C154945302 @default.
- W2345075033 hasConceptScore W2345075033C155032097 @default.
- W2345075033 hasConceptScore W2345075033C177264268 @default.
- W2345075033 hasConceptScore W2345075033C178790620 @default.
- W2345075033 hasConceptScore W2345075033C185592680 @default.
- W2345075033 hasConceptScore W2345075033C194439259 @default.
- W2345075033 hasConceptScore W2345075033C199360897 @default.