Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345211892> ?p ?o ?g. }
- W2345211892 endingPage "2269" @default.
- W2345211892 startingPage "2255" @default.
- W2345211892 abstract "Pansharpening is the fusion of low-resolution multispectral (MS) images and high-resolution panchromatic (PAN) images to yield a high-resolution MS image. The component substitution (CS) and multiresolution analysis (MRA) methods are usually computationally efficient, making them able to handle large datasets. However, these methods often produce images that suffer from spectral and spatial distortions. The CS and MRA methods can be described using general injection schemes where details extracted from the PAN image, modulated by a band-dependent gain constant, are added to the MS image, which has been interpolated to the size of the PAN image. In this paper, we propose a simple modification of these schemes where the interpolated MS image is replaced by its deblurred version, where the deblurring kernel is matched to the modulation transfer function (MTF) of the MS sensor. This can significantly enhance the quality of the fused image. Using two real datasets and one simulated dataset, our experimental results show that using the proposed preprocessing method can significantly increase both the spectral and spatial quality of the fused image according to quantitative quality metrics." @default.
- W2345211892 created "2016-06-24" @default.
- W2345211892 creator A5002687387 @default.
- W2345211892 creator A5008277487 @default.
- W2345211892 creator A5052449942 @default.
- W2345211892 creator A5069292094 @default.
- W2345211892 date "2016-06-01" @default.
- W2345211892 modified "2023-09-30" @default.
- W2345211892 title "MTF-Based Deblurring Using a Wiener Filter for CS and MRA Pansharpening Methods" @default.
- W2345211892 cites W1510355813 @default.
- W2345211892 cites W1943127271 @default.
- W2345211892 cites W1975310160 @default.
- W2345211892 cites W1980110630 @default.
- W2345211892 cites W1992609597 @default.
- W2345211892 cites W1992989485 @default.
- W2345211892 cites W1997942468 @default.
- W2345211892 cites W1998299834 @default.
- W2345211892 cites W2000323021 @default.
- W2345211892 cites W2001800591 @default.
- W2345211892 cites W2005836623 @default.
- W2345211892 cites W2010515061 @default.
- W2345211892 cites W2015380729 @default.
- W2345211892 cites W2039331314 @default.
- W2345211892 cites W2053295068 @default.
- W2345211892 cites W2054133252 @default.
- W2345211892 cites W2054440797 @default.
- W2345211892 cites W2064366277 @default.
- W2345211892 cites W2088538848 @default.
- W2345211892 cites W2099345379 @default.
- W2345211892 cites W2100705753 @default.
- W2345211892 cites W2106891293 @default.
- W2345211892 cites W2109526535 @default.
- W2345211892 cites W2111654093 @default.
- W2345211892 cites W2113338111 @default.
- W2345211892 cites W2116988482 @default.
- W2345211892 cites W2124743705 @default.
- W2345211892 cites W2139529730 @default.
- W2345211892 cites W2142843085 @default.
- W2345211892 cites W2152254169 @default.
- W2345211892 cites W2159269332 @default.
- W2345211892 cites W2163334907 @default.
- W2345211892 cites W2170608748 @default.
- W2345211892 cites W2171108951 @default.
- W2345211892 cites W2171211028 @default.
- W2345211892 cites W2172185514 @default.
- W2345211892 cites W2394774286 @default.
- W2345211892 cites W3104720471 @default.
- W2345211892 doi "https://doi.org/10.1109/jstars.2016.2546061" @default.
- W2345211892 hasPublicationYear "2016" @default.
- W2345211892 type Work @default.
- W2345211892 sameAs 2345211892 @default.
- W2345211892 citedByCount "45" @default.
- W2345211892 countsByYear W23452118922017 @default.
- W2345211892 countsByYear W23452118922018 @default.
- W2345211892 countsByYear W23452118922019 @default.
- W2345211892 countsByYear W23452118922020 @default.
- W2345211892 countsByYear W23452118922021 @default.
- W2345211892 countsByYear W23452118922022 @default.
- W2345211892 countsByYear W23452118922023 @default.
- W2345211892 crossrefType "journal-article" @default.
- W2345211892 hasAuthorship W2345211892A5002687387 @default.
- W2345211892 hasAuthorship W2345211892A5008277487 @default.
- W2345211892 hasAuthorship W2345211892A5052449942 @default.
- W2345211892 hasAuthorship W2345211892A5069292094 @default.
- W2345211892 hasConcept C106430172 @default.
- W2345211892 hasConcept C107445234 @default.
- W2345211892 hasConcept C114614502 @default.
- W2345211892 hasConcept C115961682 @default.
- W2345211892 hasConcept C134306372 @default.
- W2345211892 hasConcept C153180895 @default.
- W2345211892 hasConcept C154945302 @default.
- W2345211892 hasConcept C160633673 @default.
- W2345211892 hasConcept C173163844 @default.
- W2345211892 hasConcept C175231954 @default.
- W2345211892 hasConcept C205372480 @default.
- W2345211892 hasConcept C2777693668 @default.
- W2345211892 hasConcept C31972630 @default.
- W2345211892 hasConcept C33923547 @default.
- W2345211892 hasConcept C41008148 @default.
- W2345211892 hasConcept C55020928 @default.
- W2345211892 hasConcept C69744172 @default.
- W2345211892 hasConcept C74193536 @default.
- W2345211892 hasConcept C9417928 @default.
- W2345211892 hasConceptScore W2345211892C106430172 @default.
- W2345211892 hasConceptScore W2345211892C107445234 @default.
- W2345211892 hasConceptScore W2345211892C114614502 @default.
- W2345211892 hasConceptScore W2345211892C115961682 @default.
- W2345211892 hasConceptScore W2345211892C134306372 @default.
- W2345211892 hasConceptScore W2345211892C153180895 @default.
- W2345211892 hasConceptScore W2345211892C154945302 @default.
- W2345211892 hasConceptScore W2345211892C160633673 @default.
- W2345211892 hasConceptScore W2345211892C173163844 @default.
- W2345211892 hasConceptScore W2345211892C175231954 @default.
- W2345211892 hasConceptScore W2345211892C205372480 @default.
- W2345211892 hasConceptScore W2345211892C2777693668 @default.
- W2345211892 hasConceptScore W2345211892C31972630 @default.
- W2345211892 hasConceptScore W2345211892C33923547 @default.
- W2345211892 hasConceptScore W2345211892C41008148 @default.