Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345318147> ?p ?o ?g. }
- W2345318147 endingPage "109" @default.
- W2345318147 startingPage "95" @default.
- W2345318147 abstract "Recently, extreme learning machine (ELM) has become a popular topic in machine learning community. By replacing the so-called ELM feature mappings with the nonlinear mappings induced by kernel functions, two kernel ELMs, i.e., P-KELM and D-KELM, are obtained from primal and dual perspectives, respectively. Unfortunately, both P-KELM and D-KELM possess the dense solutions in direct proportion to the number of training data. To this end, a constructive algorithm for P-KELM (CCP-KELM) is first proposed by virtue of Cholesky factorization, in which the training data incurring the largest reductions on the objective function are recruited as significant vectors. To reduce its training cost further, PCCP-KELM is then obtained with the application of a probabilistic speedup scheme into CCP-KELM. Corresponding to CCP-KELM, a destructive P-KELM (CDP-KELM) is presented using a partial Cholesky factorization strategy, where the training data incurring the smallest reductions on the objective function after their removals are pruned from the current set of significant vectors. Finally, to verify the efficacy and feasibility of the proposed algorithms in this paper, experiments on both small and large benchmark data sets are investigated." @default.
- W2345318147 created "2016-06-24" @default.
- W2345318147 creator A5044023674 @default.
- W2345318147 date "2016-08-01" @default.
- W2345318147 modified "2023-10-18" @default.
- W2345318147 title "Parsimonious kernel extreme learning machine in primal via Cholesky factorization" @default.
- W2345318147 cites W1498436455 @default.
- W2345318147 cites W1540155273 @default.
- W2345318147 cites W1541542649 @default.
- W2345318147 cites W1596717185 @default.
- W2345318147 cites W1621799579 @default.
- W2345318147 cites W1765650989 @default.
- W2345318147 cites W1973132987 @default.
- W2345318147 cites W1973433968 @default.
- W2345318147 cites W1973650920 @default.
- W2345318147 cites W1986336378 @default.
- W2345318147 cites W1988835709 @default.
- W2345318147 cites W1990938413 @default.
- W2345318147 cites W1993717606 @default.
- W2345318147 cites W2007381304 @default.
- W2345318147 cites W2008654225 @default.
- W2345318147 cites W2013668940 @default.
- W2345318147 cites W2016924348 @default.
- W2345318147 cites W2026131661 @default.
- W2345318147 cites W2039361386 @default.
- W2345318147 cites W2052888998 @default.
- W2345318147 cites W2055021408 @default.
- W2345318147 cites W2059776567 @default.
- W2345318147 cites W2063143152 @default.
- W2345318147 cites W2073259742 @default.
- W2345318147 cites W2089282273 @default.
- W2345318147 cites W2092910747 @default.
- W2345318147 cites W2096987757 @default.
- W2345318147 cites W2111072639 @default.
- W2345318147 cites W2121971770 @default.
- W2345318147 cites W2122040390 @default.
- W2345318147 cites W2130378394 @default.
- W2345318147 cites W2132406812 @default.
- W2345318147 cites W2134603844 @default.
- W2345318147 cites W2141695047 @default.
- W2345318147 cites W2147898188 @default.
- W2345318147 cites W2149298154 @default.
- W2345318147 cites W2154852616 @default.
- W2345318147 cites W2157595416 @default.
- W2345318147 cites W2165967751 @default.
- W2345318147 cites W2166185161 @default.
- W2345318147 cites W2190011822 @default.
- W2345318147 cites W2234781454 @default.
- W2345318147 cites W2250547309 @default.
- W2345318147 cites W2283737367 @default.
- W2345318147 cites W2291172083 @default.
- W2345318147 cites W336422845 @default.
- W2345318147 cites W4239510810 @default.
- W2345318147 doi "https://doi.org/10.1016/j.neunet.2016.04.009" @default.
- W2345318147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27203553" @default.
- W2345318147 hasPublicationYear "2016" @default.
- W2345318147 type Work @default.
- W2345318147 sameAs 2345318147 @default.
- W2345318147 citedByCount "17" @default.
- W2345318147 countsByYear W23453181472017 @default.
- W2345318147 countsByYear W23453181472018 @default.
- W2345318147 countsByYear W23453181472019 @default.
- W2345318147 countsByYear W23453181472020 @default.
- W2345318147 countsByYear W23453181472021 @default.
- W2345318147 crossrefType "journal-article" @default.
- W2345318147 hasAuthorship W2345318147A5044023674 @default.
- W2345318147 hasConcept C11413529 @default.
- W2345318147 hasConcept C114614502 @default.
- W2345318147 hasConcept C121332964 @default.
- W2345318147 hasConcept C13280743 @default.
- W2345318147 hasConcept C154945302 @default.
- W2345318147 hasConcept C158693339 @default.
- W2345318147 hasConcept C185798385 @default.
- W2345318147 hasConcept C205649164 @default.
- W2345318147 hasConcept C2780150128 @default.
- W2345318147 hasConcept C33923547 @default.
- W2345318147 hasConcept C34727166 @default.
- W2345318147 hasConcept C41008148 @default.
- W2345318147 hasConcept C50644808 @default.
- W2345318147 hasConcept C62520636 @default.
- W2345318147 hasConcept C74193536 @default.
- W2345318147 hasConceptScore W2345318147C11413529 @default.
- W2345318147 hasConceptScore W2345318147C114614502 @default.
- W2345318147 hasConceptScore W2345318147C121332964 @default.
- W2345318147 hasConceptScore W2345318147C13280743 @default.
- W2345318147 hasConceptScore W2345318147C154945302 @default.
- W2345318147 hasConceptScore W2345318147C158693339 @default.
- W2345318147 hasConceptScore W2345318147C185798385 @default.
- W2345318147 hasConceptScore W2345318147C205649164 @default.
- W2345318147 hasConceptScore W2345318147C2780150128 @default.
- W2345318147 hasConceptScore W2345318147C33923547 @default.
- W2345318147 hasConceptScore W2345318147C34727166 @default.
- W2345318147 hasConceptScore W2345318147C41008148 @default.
- W2345318147 hasConceptScore W2345318147C50644808 @default.
- W2345318147 hasConceptScore W2345318147C62520636 @default.
- W2345318147 hasConceptScore W2345318147C74193536 @default.
- W2345318147 hasFunder F4320335787 @default.
- W2345318147 hasLocation W23453181471 @default.