Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345473721> ?p ?o ?g. }
- W2345473721 abstract "The celebrated Cheeger's Inequality establishes a bound on the edge expansion of a graph via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate various combinatorial properties of the hypergraph. In this paper we introduce a new hypergraph Laplacian operator generalizing the Laplacian matrix of graphs. In particular, the operator is induced by a diffusion process on the hypergraph, such that within each hyperedge, measure flows from vertices having maximum weighted measure to those having minimum. Since the operator is non-linear, we have to exploit other properties of the diffusion process to recover a spectral property concerning the second eigenvalue of the resulting Laplacian. Moreover, we show that higher order spectral properties cannot hold in general using the current framework. We consider a stochastic diffusion process, in which each vertex also experiences Brownian noise from outside the system. We show a relationship between the second eigenvalue and the convergence behavior of the process. We show that various hypergraph parameters like multi-way expansion and diameter can be bounded using this operator's spectral properties. Since higher order spectral properties do not hold for the Laplacian operator, we instead use the concept of procedural minimizers to consider higher order Cheeger-like inequalities. For any positive integer $k$, we give a polynomial time algorithm to compute an $O(log r)$-approximation to the $k$-th procedural minimizer, where $r$ is the maximum cardinality of a hyperedge. We show that this approximation factor is optimal under the SSE hypothesis for constant values of $k$." @default.
- W2345473721 created "2016-06-24" @default.
- W2345473721 creator A5018708584 @default.
- W2345473721 creator A5032128738 @default.
- W2345473721 creator A5048212796 @default.
- W2345473721 creator A5059653613 @default.
- W2345473721 date "2016-05-04" @default.
- W2345473721 modified "2023-09-25" @default.
- W2345473721 title "Spectral Properties of Hypergraph Laplacian and Approximation Algorithms" @default.
- W2345473721 cites W1515409457 @default.
- W2345473721 cites W1535144194 @default.
- W2345473721 cites W1576252999 @default.
- W2345473721 cites W1578099820 @default.
- W2345473721 cites W1582786183 @default.
- W2345473721 cites W1631603072 @default.
- W2345473721 cites W1663133818 @default.
- W2345473721 cites W1965562201 @default.
- W2345473721 cites W1966461475 @default.
- W2345473721 cites W1979110822 @default.
- W2345473721 cites W1981893977 @default.
- W2345473721 cites W1982180670 @default.
- W2345473721 cites W1984283136 @default.
- W2345473721 cites W1984697146 @default.
- W2345473721 cites W1993111701 @default.
- W2345473721 cites W1994818989 @default.
- W2345473721 cites W1998400388 @default.
- W2345473721 cites W2002443286 @default.
- W2345473721 cites W2004879152 @default.
- W2345473721 cites W2005158847 @default.
- W2345473721 cites W2007280161 @default.
- W2345473721 cites W2018047324 @default.
- W2345473721 cites W2019404063 @default.
- W2345473721 cites W2029282358 @default.
- W2345473721 cites W2038691311 @default.
- W2345473721 cites W2066590618 @default.
- W2345473721 cites W2072211488 @default.
- W2345473721 cites W2076164610 @default.
- W2345473721 cites W2078174680 @default.
- W2345473721 cites W2079705627 @default.
- W2345473721 cites W2088844265 @default.
- W2345473721 cites W2120997209 @default.
- W2345473721 cites W2121947440 @default.
- W2345473721 cites W2127927798 @default.
- W2345473721 cites W2134062801 @default.
- W2345473721 cites W2142184646 @default.
- W2345473721 cites W2146091965 @default.
- W2345473721 cites W2151679746 @default.
- W2345473721 cites W2153250079 @default.
- W2345473721 cites W2154380126 @default.
- W2345473721 cites W2154876245 @default.
- W2345473721 cites W2162602945 @default.
- W2345473721 cites W2163925208 @default.
- W2345473721 cites W2165755074 @default.
- W2345473721 cites W2248896003 @default.
- W2345473721 cites W2260276383 @default.
- W2345473721 cites W2293231900 @default.
- W2345473721 cites W2407834012 @default.
- W2345473721 cites W2951839680 @default.
- W2345473721 cites W2963986398 @default.
- W2345473721 cites W2964074814 @default.
- W2345473721 cites W2964115161 @default.
- W2345473721 cites W2964115409 @default.
- W2345473721 cites W5776283 @default.
- W2345473721 doi "https://doi.org/10.48550/arxiv.1605.01483" @default.
- W2345473721 hasPublicationYear "2016" @default.
- W2345473721 type Work @default.
- W2345473721 sameAs 2345473721 @default.
- W2345473721 citedByCount "2" @default.
- W2345473721 countsByYear W23454737212017 @default.
- W2345473721 countsByYear W23454737212021 @default.
- W2345473721 crossrefType "posted-content" @default.
- W2345473721 hasAuthorship W2345473721A5018708584 @default.
- W2345473721 hasAuthorship W2345473721A5032128738 @default.
- W2345473721 hasAuthorship W2345473721A5048212796 @default.
- W2345473721 hasAuthorship W2345473721A5059653613 @default.
- W2345473721 hasBestOaLocation W23454737211 @default.
- W2345473721 hasConcept C104317684 @default.
- W2345473721 hasConcept C105611402 @default.
- W2345473721 hasConcept C105795698 @default.
- W2345473721 hasConcept C114614502 @default.
- W2345473721 hasConcept C115178988 @default.
- W2345473721 hasConcept C118615104 @default.
- W2345473721 hasConcept C121332964 @default.
- W2345473721 hasConcept C132525143 @default.
- W2345473721 hasConcept C134306372 @default.
- W2345473721 hasConcept C149530733 @default.
- W2345473721 hasConcept C158448853 @default.
- W2345473721 hasConcept C158693339 @default.
- W2345473721 hasConcept C165700671 @default.
- W2345473721 hasConcept C17020691 @default.
- W2345473721 hasConcept C180356752 @default.
- W2345473721 hasConcept C185592680 @default.
- W2345473721 hasConcept C203776342 @default.
- W2345473721 hasConcept C2781221856 @default.
- W2345473721 hasConcept C33923547 @default.
- W2345473721 hasConcept C34388435 @default.
- W2345473721 hasConcept C55493867 @default.
- W2345473721 hasConcept C62520636 @default.
- W2345473721 hasConcept C73555534 @default.
- W2345473721 hasConcept C74003402 @default.