Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345557152> ?p ?o ?g. }
- W2345557152 endingPage "3207" @default.
- W2345557152 startingPage "3194" @default.
- W2345557152 abstract "Single image super-resolution (SR) is an ill-posed problem, which tries to recover a high-resolution image from its low-resolution observation. To regularize the solution of the problem, previous methods have focused on designing good priors for natural images, such as sparse representation, or directly learning the priors from a large data set with models, such as deep neural networks. In this paper, we argue that domain expertise from the conventional sparse coding model can be combined with the key ingredients of deep learning to achieve further improved results. We demonstrate that a sparse coding model particularly designed for SR can be incarnated as a neural network with the merit of end-to-end optimization over training data. The network has a cascaded structure, which boosts the SR performance for both fixed and incremental scaling factors. The proposed training and testing schemes can be extended for robust handling of images with additional degradation, such as noise and blurring. A subjective assessment is conducted and analyzed in order to thoroughly evaluate various SR techniques. Our proposed model is tested on a wide range of images, and it significantly outperforms the existing state-of-the-art methods for various scaling factors both quantitatively and perceptually." @default.
- W2345557152 created "2016-06-24" @default.
- W2345557152 creator A5008831111 @default.
- W2345557152 creator A5024709593 @default.
- W2345557152 creator A5037692949 @default.
- W2345557152 creator A5038815767 @default.
- W2345557152 creator A5068625652 @default.
- W2345557152 creator A5083958225 @default.
- W2345557152 date "2016-07-01" @default.
- W2345557152 modified "2023-10-17" @default.
- W2345557152 title "Robust Single Image Super-Resolution via Deep Networks With Sparse Prior" @default.
- W2345557152 cites W135113724 @default.
- W2345557152 cites W1791560514 @default.
- W2345557152 cites W1885185971 @default.
- W2345557152 cites W1919542679 @default.
- W2345557152 cites W1930824406 @default.
- W2345557152 cites W1976416062 @default.
- W2345557152 cites W1992408872 @default.
- W2345557152 cites W2002932002 @default.
- W2345557152 cites W2013784666 @default.
- W2345557152 cites W2047920195 @default.
- W2345557152 cites W2056370875 @default.
- W2345557152 cites W2062797058 @default.
- W2345557152 cites W2075157914 @default.
- W2345557152 cites W2088254198 @default.
- W2345557152 cites W2097073572 @default.
- W2345557152 cites W2099470017 @default.
- W2345557152 cites W2100543212 @default.
- W2345557152 cites W2103844245 @default.
- W2345557152 cites W2115706991 @default.
- W2345557152 cites W2120480077 @default.
- W2345557152 cites W2121058967 @default.
- W2345557152 cites W2121927366 @default.
- W2345557152 cites W2133665775 @default.
- W2345557152 cites W2137974653 @default.
- W2345557152 cites W2149669120 @default.
- W2345557152 cites W2150081556 @default.
- W2345557152 cites W2151452149 @default.
- W2345557152 cites W2160547390 @default.
- W2345557152 cites W2161381512 @default.
- W2345557152 cites W2163523041 @default.
- W2345557152 cites W2164551808 @default.
- W2345557152 cites W2170965888 @default.
- W2345557152 cites W2293090580 @default.
- W2345557152 cites W2469023256 @default.
- W2345557152 cites W2503812215 @default.
- W2345557152 cites W2534320940 @default.
- W2345557152 cites W3105700508 @default.
- W2345557152 cites W3137074406 @default.
- W2345557152 cites W4136762 @default.
- W2345557152 cites W4378761606 @default.
- W2345557152 cites W54257720 @default.
- W2345557152 cites W7682646 @default.
- W2345557152 doi "https://doi.org/10.1109/tip.2016.2564643" @default.
- W2345557152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27168598" @default.
- W2345557152 hasPublicationYear "2016" @default.
- W2345557152 type Work @default.
- W2345557152 sameAs 2345557152 @default.
- W2345557152 citedByCount "245" @default.
- W2345557152 countsByYear W23455571522016 @default.
- W2345557152 countsByYear W23455571522017 @default.
- W2345557152 countsByYear W23455571522018 @default.
- W2345557152 countsByYear W23455571522019 @default.
- W2345557152 countsByYear W23455571522020 @default.
- W2345557152 countsByYear W23455571522021 @default.
- W2345557152 countsByYear W23455571522022 @default.
- W2345557152 countsByYear W23455571522023 @default.
- W2345557152 crossrefType "journal-article" @default.
- W2345557152 hasAuthorship W2345557152A5008831111 @default.
- W2345557152 hasAuthorship W2345557152A5024709593 @default.
- W2345557152 hasAuthorship W2345557152A5037692949 @default.
- W2345557152 hasAuthorship W2345557152A5038815767 @default.
- W2345557152 hasAuthorship W2345557152A5068625652 @default.
- W2345557152 hasAuthorship W2345557152A5083958225 @default.
- W2345557152 hasConcept C104317684 @default.
- W2345557152 hasConcept C107673813 @default.
- W2345557152 hasConcept C108583219 @default.
- W2345557152 hasConcept C115961682 @default.
- W2345557152 hasConcept C124066611 @default.
- W2345557152 hasConcept C141379421 @default.
- W2345557152 hasConcept C153180895 @default.
- W2345557152 hasConcept C154945302 @default.
- W2345557152 hasConcept C177769412 @default.
- W2345557152 hasConcept C185592680 @default.
- W2345557152 hasConcept C31972630 @default.
- W2345557152 hasConcept C41008148 @default.
- W2345557152 hasConcept C50644808 @default.
- W2345557152 hasConcept C55493867 @default.
- W2345557152 hasConcept C58489278 @default.
- W2345557152 hasConcept C63479239 @default.
- W2345557152 hasConcept C67186912 @default.
- W2345557152 hasConcept C77088390 @default.
- W2345557152 hasConcept C77637269 @default.
- W2345557152 hasConceptScore W2345557152C104317684 @default.
- W2345557152 hasConceptScore W2345557152C107673813 @default.
- W2345557152 hasConceptScore W2345557152C108583219 @default.
- W2345557152 hasConceptScore W2345557152C115961682 @default.
- W2345557152 hasConceptScore W2345557152C124066611 @default.