Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345603840> ?p ?o ?g. }
- W2345603840 endingPage "140" @default.
- W2345603840 startingPage "140" @default.
- W2345603840 abstract "<span style=font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-ansi-language: EN-US; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; lang=EN-US>Biometric technology has attracted much attention in biometric recognition. Significant online and offline applications satisfy security and human identification based on this technology. Biometric technology identifies a human based on unique features possessed by a person. Biometric features may be physiological or behavioral. A physiological feature is based on the direct measurement of a part of the human body such as a fingerprint, face, iris, blood vessel pattern at the back of the eye, vascular patterns, DNA, and hand or palm scan recognition. A behavioral feature is based on data derived from an action performed by the user. Thus, this feature measures the characteristics of the human body such as signature/handwriting, gait, voice, gesture, and keystroke dynamics. A biometric system is performed as follows: acquisition, comparison, feature extraction, and matching. The most important step is feature extraction, which determines the performance of human identification. Different methods are used for extraction, namely, appearance- and geometry-based methods. This paper reports on a review of human identification based on geometric feature extraction using several biometric systems available. We compared the different biometrics in biometric technology based on the geometric features extracted in different studies. Several biometric approaches have more geometric features, such as hand, gait, face, fingerprint, and signature features, compared with other biometric technology. Thus, geometry-based method with different biometrics can be applied simply and efficiently. The eye region extracted from the face is mainly used in face recognition. In addition, the extracted eye region has more details as the iris features.</span>" @default.
- W2345603840 created "2016-06-24" @default.
- W2345603840 creator A5091132280 @default.
- W2345603840 date "2016-05-02" @default.
- W2345603840 modified "2023-10-01" @default.
- W2345603840 title "Human Identification Based on Geometric Feature Extraction Using a Number of Biometric Systems Available: Review" @default.
- W2345603840 cites W1607856056 @default.
- W2345603840 cites W1873533840 @default.
- W2345603840 cites W1971957654 @default.
- W2345603840 cites W2013796631 @default.
- W2345603840 cites W2039679570 @default.
- W2345603840 cites W2054072338 @default.
- W2345603840 cites W2071695788 @default.
- W2345603840 cites W2128672601 @default.
- W2345603840 cites W21325108 @default.
- W2345603840 cites W2141577351 @default.
- W2345603840 cites W2142225719 @default.
- W2345603840 cites W2142835476 @default.
- W2345603840 cites W2143260286 @default.
- W2345603840 cites W2150947894 @default.
- W2345603840 cites W2151403658 @default.
- W2345603840 cites W2181514080 @default.
- W2345603840 cites W2181964004 @default.
- W2345603840 cites W2299847833 @default.
- W2345603840 cites W2311842573 @default.
- W2345603840 cites W2316270037 @default.
- W2345603840 cites W2324333004 @default.
- W2345603840 cites W2333688694 @default.
- W2345603840 cites W2355061182 @default.
- W2345603840 cites W2487561337 @default.
- W2345603840 cites W2507066460 @default.
- W2345603840 cites W2559954715 @default.
- W2345603840 cites W2791439355 @default.
- W2345603840 cites W2963719945 @default.
- W2345603840 cites W3103519811 @default.
- W2345603840 cites W2183058921 @default.
- W2345603840 cites W2185948874 @default.
- W2345603840 cites W2187995883 @default.
- W2345603840 cites W2188372052 @default.
- W2345603840 cites W2359593715 @default.
- W2345603840 doi "https://doi.org/10.5539/cis.v9n2p140" @default.
- W2345603840 hasPublicationYear "2016" @default.
- W2345603840 type Work @default.
- W2345603840 sameAs 2345603840 @default.
- W2345603840 citedByCount "2" @default.
- W2345603840 countsByYear W23456038402017 @default.
- W2345603840 countsByYear W23456038402019 @default.
- W2345603840 crossrefType "journal-article" @default.
- W2345603840 hasAuthorship W2345603840A5091132280 @default.
- W2345603840 hasBestOaLocation W23456038401 @default.
- W2345603840 hasConcept C109297577 @default.
- W2345603840 hasConcept C112356035 @default.
- W2345603840 hasConcept C116834253 @default.
- W2345603840 hasConcept C138885662 @default.
- W2345603840 hasConcept C144024400 @default.
- W2345603840 hasConcept C146318809 @default.
- W2345603840 hasConcept C153180895 @default.
- W2345603840 hasConcept C154945302 @default.
- W2345603840 hasConcept C184297639 @default.
- W2345603840 hasConcept C2776401178 @default.
- W2345603840 hasConcept C2777503689 @default.
- W2345603840 hasConcept C2777826928 @default.
- W2345603840 hasConcept C2779304628 @default.
- W2345603840 hasConcept C31258907 @default.
- W2345603840 hasConcept C31972630 @default.
- W2345603840 hasConcept C36289849 @default.
- W2345603840 hasConcept C41008148 @default.
- W2345603840 hasConcept C41895202 @default.
- W2345603840 hasConcept C4957475 @default.
- W2345603840 hasConcept C52622490 @default.
- W2345603840 hasConcept C59822182 @default.
- W2345603840 hasConcept C74370796 @default.
- W2345603840 hasConcept C79540074 @default.
- W2345603840 hasConcept C86803240 @default.
- W2345603840 hasConceptScore W2345603840C109297577 @default.
- W2345603840 hasConceptScore W2345603840C112356035 @default.
- W2345603840 hasConceptScore W2345603840C116834253 @default.
- W2345603840 hasConceptScore W2345603840C138885662 @default.
- W2345603840 hasConceptScore W2345603840C144024400 @default.
- W2345603840 hasConceptScore W2345603840C146318809 @default.
- W2345603840 hasConceptScore W2345603840C153180895 @default.
- W2345603840 hasConceptScore W2345603840C154945302 @default.
- W2345603840 hasConceptScore W2345603840C184297639 @default.
- W2345603840 hasConceptScore W2345603840C2776401178 @default.
- W2345603840 hasConceptScore W2345603840C2777503689 @default.
- W2345603840 hasConceptScore W2345603840C2777826928 @default.
- W2345603840 hasConceptScore W2345603840C2779304628 @default.
- W2345603840 hasConceptScore W2345603840C31258907 @default.
- W2345603840 hasConceptScore W2345603840C31972630 @default.
- W2345603840 hasConceptScore W2345603840C36289849 @default.
- W2345603840 hasConceptScore W2345603840C41008148 @default.
- W2345603840 hasConceptScore W2345603840C41895202 @default.
- W2345603840 hasConceptScore W2345603840C4957475 @default.
- W2345603840 hasConceptScore W2345603840C52622490 @default.
- W2345603840 hasConceptScore W2345603840C59822182 @default.
- W2345603840 hasConceptScore W2345603840C74370796 @default.
- W2345603840 hasConceptScore W2345603840C79540074 @default.
- W2345603840 hasConceptScore W2345603840C86803240 @default.