Matches in SemOpenAlex for { <https://semopenalex.org/work/W2345769133> ?p ?o ?g. }
- W2345769133 endingPage "5452" @default.
- W2345769133 startingPage "5430" @default.
- W2345769133 abstract "Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the great availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. The core novelty of this study is the development and application of two innovative spatial performance metrics, namely, empirical orthogonal function (EOF) and connectivity analyses, to validate predicted LST patterns by three LSMs (Mosaic, Noah, Variable Infiltration Capacity (VIC)) over the contiguous United States. The LST validation data set is derived from global High-Resolution Infrared Radiometric Sounder retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly correlated to air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings." @default.
- W2345769133 created "2016-06-24" @default.
- W2345769133 creator A5017270088 @default.
- W2345769133 creator A5019801915 @default.
- W2345769133 creator A5039464241 @default.
- W2345769133 creator A5048795657 @default.
- W2345769133 date "2016-05-21" @default.
- W2345769133 modified "2023-10-15" @default.
- W2345769133 title "Spatial validation of large‐scale land surface models against monthly land surface temperature patterns using innovative performance metrics" @default.
- W2345769133 cites W1134491687 @default.
- W2345769133 cites W1551697193 @default.
- W2345769133 cites W1738221900 @default.
- W2345769133 cites W1943142602 @default.
- W2345769133 cites W1968508976 @default.
- W2345769133 cites W1971429875 @default.
- W2345769133 cites W1975768883 @default.
- W2345769133 cites W1976252175 @default.
- W2345769133 cites W1979282872 @default.
- W2345769133 cites W1979723077 @default.
- W2345769133 cites W1981101479 @default.
- W2345769133 cites W1982784563 @default.
- W2345769133 cites W1984558703 @default.
- W2345769133 cites W1987592653 @default.
- W2345769133 cites W1991307278 @default.
- W2345769133 cites W1994660396 @default.
- W2345769133 cites W1998457169 @default.
- W2345769133 cites W2000204314 @default.
- W2345769133 cites W2001104523 @default.
- W2345769133 cites W2001747391 @default.
- W2345769133 cites W2008188833 @default.
- W2345769133 cites W2008684942 @default.
- W2345769133 cites W2011423033 @default.
- W2345769133 cites W2015932014 @default.
- W2345769133 cites W2018178054 @default.
- W2345769133 cites W2026337749 @default.
- W2345769133 cites W2032981909 @default.
- W2345769133 cites W2033211927 @default.
- W2345769133 cites W2036918477 @default.
- W2345769133 cites W2037681017 @default.
- W2345769133 cites W2040277598 @default.
- W2345769133 cites W2041757358 @default.
- W2345769133 cites W2045944858 @default.
- W2345769133 cites W2048570972 @default.
- W2345769133 cites W2053656269 @default.
- W2345769133 cites W2058070495 @default.
- W2345769133 cites W2060975319 @default.
- W2345769133 cites W2073824559 @default.
- W2345769133 cites W2074747309 @default.
- W2345769133 cites W2075573792 @default.
- W2345769133 cites W2085692681 @default.
- W2345769133 cites W2091232816 @default.
- W2345769133 cites W2100406744 @default.
- W2345769133 cites W2101225175 @default.
- W2345769133 cites W2107835656 @default.
- W2345769133 cites W2109696661 @default.
- W2345769133 cites W2115806720 @default.
- W2345769133 cites W2119130463 @default.
- W2345769133 cites W2119179872 @default.
- W2345769133 cites W2121687501 @default.
- W2345769133 cites W2124463754 @default.
- W2345769133 cites W2130746770 @default.
- W2345769133 cites W2137639805 @default.
- W2345769133 cites W2140614606 @default.
- W2345769133 cites W2141798294 @default.
- W2345769133 cites W2144653885 @default.
- W2345769133 cites W2147347671 @default.
- W2345769133 cites W2149231138 @default.
- W2345769133 cites W2152977202 @default.
- W2345769133 cites W2157096526 @default.
- W2345769133 cites W2157659866 @default.
- W2345769133 cites W2159078401 @default.
- W2345769133 cites W2159587241 @default.
- W2345769133 cites W2160289393 @default.
- W2345769133 cites W2164628306 @default.
- W2345769133 cites W2166499751 @default.
- W2345769133 cites W2168284104 @default.
- W2345769133 cites W2170034874 @default.
- W2345769133 cites W2170797800 @default.
- W2345769133 cites W2172116026 @default.
- W2345769133 cites W2174755142 @default.
- W2345769133 cites W2177023334 @default.
- W2345769133 cites W2202444713 @default.
- W2345769133 cites W2207430786 @default.
- W2345769133 cites W2289069053 @default.
- W2345769133 cites W2338049369 @default.
- W2345769133 cites W54742089 @default.
- W2345769133 cites W591338409 @default.
- W2345769133 doi "https://doi.org/10.1002/2015jd024482" @default.
- W2345769133 hasPublicationYear "2016" @default.
- W2345769133 type Work @default.
- W2345769133 sameAs 2345769133 @default.
- W2345769133 citedByCount "42" @default.
- W2345769133 countsByYear W23457691332016 @default.
- W2345769133 countsByYear W23457691332017 @default.
- W2345769133 countsByYear W23457691332018 @default.
- W2345769133 countsByYear W23457691332019 @default.
- W2345769133 countsByYear W23457691332020 @default.
- W2345769133 countsByYear W23457691332021 @default.