Matches in SemOpenAlex for { <https://semopenalex.org/work/W2346435300> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2346435300 abstract "Recent advances in Information Retrieval (IR) are based on statistical language models. Most retrieval experiments demonstrating the language modeling approach use smoothed unigram language models that only exploit the term occurrence statistic in probability estimation. Experiments with additional features like bigrams have met with limited success. However, language models incorporating n-gram, word-triggers, topic of discourse, syntactic and semantic features have shown significant improvements in speech recognition. The main thrust of this dissertation is to identify the need to design language models for IR that satisfy its specific modeling requirements and demonstrate it by designing language models that (1) incorporate IR-specific features (biterm language model), (2) correspond to better document and query representations (concept language model) and (3) combine evidence from the different information sources (language features) towards modeling the relevance of a document to a given query (maximum entropy language models for IR). Illustrating the difference between the language modeling requirements of speech recognition and information retrieval, the dissertation proposes biterm language model that identifies term co-occurrence rather than order of term occurrence as an important feature for IR. Biterm language models handle the local variation in the surface form of the words that express a concept of interest. It is, however, these concepts that need to be modeled in the queries to improve retrieval performance. Concept language models proposed here model user's information need as a sequence of concepts and the query as an expression of such concepts of interest. Empirical results demonstrate significant improvements in retrieval performance. While mixture models, that combine statistical evidence from different information sources to estimate the probability distribution, are easy to implement, they seem to make suboptimal use of their components. A natural method of combining information sources based on the Maximum Entropy Principle, that has been shown to be effective in speech recognition, is proposed here as a solution to the information retrieval problem. In the context of document likelihood models, the maximum entropy language model for information retrieval provides a better mechanism for incorporating external knowledge and additional syntactic and semantic features of the language in language models for IR." @default.
- W2346435300 created "2016-06-24" @default.
- W2346435300 creator A5050739350 @default.
- W2346435300 creator A5063869451 @default.
- W2346435300 date "2004-01-01" @default.
- W2346435300 modified "2023-09-27" @default.
- W2346435300 title "Exploiting query features in language modeling approach for information retrieval" @default.
- W2346435300 hasPublicationYear "2004" @default.
- W2346435300 type Work @default.
- W2346435300 sameAs 2346435300 @default.
- W2346435300 citedByCount "4" @default.
- W2346435300 countsByYear W23464353002012 @default.
- W2346435300 crossrefType "journal-article" @default.
- W2346435300 hasAuthorship W2346435300A5050739350 @default.
- W2346435300 hasAuthorship W2346435300A5063869451 @default.
- W2346435300 hasConcept C108757681 @default.
- W2346435300 hasConcept C129353971 @default.
- W2346435300 hasConcept C129792486 @default.
- W2346435300 hasConcept C137293760 @default.
- W2346435300 hasConcept C137546455 @default.
- W2346435300 hasConcept C154945302 @default.
- W2346435300 hasConcept C158154518 @default.
- W2346435300 hasConcept C17744445 @default.
- W2346435300 hasConcept C192028432 @default.
- W2346435300 hasConcept C195324797 @default.
- W2346435300 hasConcept C199539241 @default.
- W2346435300 hasConcept C204321447 @default.
- W2346435300 hasConcept C23123220 @default.
- W2346435300 hasConcept C39608478 @default.
- W2346435300 hasConcept C41008148 @default.
- W2346435300 hasConcept C44291984 @default.
- W2346435300 hasConcept C83479923 @default.
- W2346435300 hasConcept C99016210 @default.
- W2346435300 hasConceptScore W2346435300C108757681 @default.
- W2346435300 hasConceptScore W2346435300C129353971 @default.
- W2346435300 hasConceptScore W2346435300C129792486 @default.
- W2346435300 hasConceptScore W2346435300C137293760 @default.
- W2346435300 hasConceptScore W2346435300C137546455 @default.
- W2346435300 hasConceptScore W2346435300C154945302 @default.
- W2346435300 hasConceptScore W2346435300C158154518 @default.
- W2346435300 hasConceptScore W2346435300C17744445 @default.
- W2346435300 hasConceptScore W2346435300C192028432 @default.
- W2346435300 hasConceptScore W2346435300C195324797 @default.
- W2346435300 hasConceptScore W2346435300C199539241 @default.
- W2346435300 hasConceptScore W2346435300C204321447 @default.
- W2346435300 hasConceptScore W2346435300C23123220 @default.
- W2346435300 hasConceptScore W2346435300C39608478 @default.
- W2346435300 hasConceptScore W2346435300C41008148 @default.
- W2346435300 hasConceptScore W2346435300C44291984 @default.
- W2346435300 hasConceptScore W2346435300C83479923 @default.
- W2346435300 hasConceptScore W2346435300C99016210 @default.
- W2346435300 hasLocation W23464353001 @default.
- W2346435300 hasOpenAccess W2346435300 @default.
- W2346435300 hasPrimaryLocation W23464353001 @default.
- W2346435300 hasRelatedWork W13780460 @default.
- W2346435300 hasRelatedWork W1493492660 @default.
- W2346435300 hasRelatedWork W1554180972 @default.
- W2346435300 hasRelatedWork W1975422446 @default.
- W2346435300 hasRelatedWork W1989664640 @default.
- W2346435300 hasRelatedWork W202921563 @default.
- W2346435300 hasRelatedWork W2073022252 @default.
- W2346435300 hasRelatedWork W2130979537 @default.
- W2346435300 hasRelatedWork W2142708709 @default.
- W2346435300 hasRelatedWork W2157052295 @default.
- W2346435300 hasRelatedWork W2268376565 @default.
- W2346435300 hasRelatedWork W2463188703 @default.
- W2346435300 hasRelatedWork W2766224017 @default.
- W2346435300 hasRelatedWork W2949887024 @default.
- W2346435300 hasRelatedWork W2997012196 @default.
- W2346435300 hasRelatedWork W3046003314 @default.
- W2346435300 hasRelatedWork W3165244476 @default.
- W2346435300 hasRelatedWork W3205874557 @default.
- W2346435300 hasRelatedWork W94084273 @default.
- W2346435300 hasRelatedWork W954742871 @default.
- W2346435300 isParatext "false" @default.
- W2346435300 isRetracted "false" @default.
- W2346435300 magId "2346435300" @default.
- W2346435300 workType "article" @default.