Matches in SemOpenAlex for { <https://semopenalex.org/work/W2346670892> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2346670892 endingPage "391" @default.
- W2346670892 startingPage "383" @default.
- W2346670892 abstract "We demonstrate the efficacy of using close-range photogrammetry from a consumer grade camera as a tool in generating high-resolution, three-dimensional coloured point clouds for detailed analysis or monitoring of wheel ruts. Ground-based timber harvesting results in vehicle traffic on 12‐70 per cent of the site, depending on the system used, with a variable probability of causing detrimental soil disturbance depending on climatic, hydrological and soil conditions at the time of harvest. Applying the technique described in this article can reduce the workload associated with the conventional manual measurement of wheel ruts, while providing a greatly enhanced source of information that can be used in analysing both physical and biological impact, or stored in a repository for later operation management or monitoring. Approaches for deriving and quantifying properties such as rut depths and soil displacement volumes are also presented. In evaluating the potential for widespread adoption of the method among forest orenvironmental managers,the studyalso presentstheworkflowandprovidesacomparisonoftheeaseofuseandqualityoftheresultsobtainedfromonecommercialandtwo open source image processing software packages. Results from a case study showed no significant difference between packages on point cloud quality in terms of model distortion. Comparison of photogrammetric profiles against profiles measured manually resulted in root mean square errors of between 2.07 and 3.84 cm for five selected road profiles. Maximal wheel rut depth for three different models were 1.15, 0.99 and 1.01 m, and estimated rut volumes were 9.84, 9.10 and 9.09 m 3 , respectively, for 22.5 m long sections." @default.
- W2346670892 created "2016-06-24" @default.
- W2346670892 creator A5010234364 @default.
- W2346670892 creator A5034096624 @default.
- W2346670892 creator A5079850934 @default.
- W2346670892 date "2016-02-22" @default.
- W2346670892 modified "2023-10-15" @default.
- W2346670892 title "Measuring wheel ruts with close-range photogrammetry" @default.
- W2346670892 cites W1978865213 @default.
- W2346670892 cites W1982372327 @default.
- W2346670892 cites W1984930918 @default.
- W2346670892 cites W1994234510 @default.
- W2346670892 cites W2008599348 @default.
- W2346670892 cites W2011233388 @default.
- W2346670892 cites W2012278803 @default.
- W2346670892 cites W2014625306 @default.
- W2346670892 cites W2017398982 @default.
- W2346670892 cites W2021193895 @default.
- W2346670892 cites W2022591200 @default.
- W2346670892 cites W2023138554 @default.
- W2346670892 cites W2046509115 @default.
- W2346670892 cites W2046961860 @default.
- W2346670892 cites W2056683431 @default.
- W2346670892 cites W2061423527 @default.
- W2346670892 cites W2067307363 @default.
- W2346670892 cites W2075420712 @default.
- W2346670892 cites W2076389115 @default.
- W2346670892 cites W2085055156 @default.
- W2346670892 cites W2105455189 @default.
- W2346670892 cites W2117248802 @default.
- W2346670892 cites W2130119423 @default.
- W2346670892 cites W2139524713 @default.
- W2346670892 cites W2144449396 @default.
- W2346670892 cites W2149390613 @default.
- W2346670892 cites W2154838123 @default.
- W2346670892 cites W2156598602 @default.
- W2346670892 cites W2168583778 @default.
- W2346670892 cites W2315269882 @default.
- W2346670892 doi "https://doi.org/10.1093/forestry/cpw009" @default.
- W2346670892 hasPublicationYear "2016" @default.
- W2346670892 type Work @default.
- W2346670892 sameAs 2346670892 @default.
- W2346670892 citedByCount "30" @default.
- W2346670892 countsByYear W23466708922017 @default.
- W2346670892 countsByYear W23466708922018 @default.
- W2346670892 countsByYear W23466708922019 @default.
- W2346670892 countsByYear W23466708922020 @default.
- W2346670892 countsByYear W23466708922021 @default.
- W2346670892 countsByYear W23466708922022 @default.
- W2346670892 countsByYear W23466708922023 @default.
- W2346670892 crossrefType "journal-article" @default.
- W2346670892 hasAuthorship W2346670892A5010234364 @default.
- W2346670892 hasAuthorship W2346670892A5034096624 @default.
- W2346670892 hasAuthorship W2346670892A5079850934 @default.
- W2346670892 hasBestOaLocation W23466708921 @default.
- W2346670892 hasConcept C117455697 @default.
- W2346670892 hasConcept C127413603 @default.
- W2346670892 hasConcept C146978453 @default.
- W2346670892 hasConcept C204323151 @default.
- W2346670892 hasConcept C205649164 @default.
- W2346670892 hasConcept C62649853 @default.
- W2346670892 hasConceptScore W2346670892C117455697 @default.
- W2346670892 hasConceptScore W2346670892C127413603 @default.
- W2346670892 hasConceptScore W2346670892C146978453 @default.
- W2346670892 hasConceptScore W2346670892C204323151 @default.
- W2346670892 hasConceptScore W2346670892C205649164 @default.
- W2346670892 hasConceptScore W2346670892C62649853 @default.
- W2346670892 hasIssue "4" @default.
- W2346670892 hasLocation W23466708921 @default.
- W2346670892 hasOpenAccess W2346670892 @default.
- W2346670892 hasPrimaryLocation W23466708921 @default.
- W2346670892 hasRelatedWork W1674937861 @default.
- W2346670892 hasRelatedWork W2012428156 @default.
- W2346670892 hasRelatedWork W2119396835 @default.
- W2346670892 hasRelatedWork W2210733028 @default.
- W2346670892 hasRelatedWork W2399240596 @default.
- W2346670892 hasRelatedWork W2742458180 @default.
- W2346670892 hasRelatedWork W2966665709 @default.
- W2346670892 hasRelatedWork W2974086295 @default.
- W2346670892 hasRelatedWork W2998126444 @default.
- W2346670892 hasRelatedWork W855590344 @default.
- W2346670892 hasVolume "89" @default.
- W2346670892 isParatext "false" @default.
- W2346670892 isRetracted "false" @default.
- W2346670892 magId "2346670892" @default.
- W2346670892 workType "article" @default.