Matches in SemOpenAlex for { <https://semopenalex.org/work/W2346751919> ?p ?o ?g. }
- W2346751919 endingPage "639" @default.
- W2346751919 startingPage "627" @default.
- W2346751919 abstract "Artificial neural networks (ANNs) are highly adaptive nonlinear optimization algorithms that have been applied in many diverse scientific endeavors, ranging from economics, engineering, physics, and chemistry to medical science. Notably, in the past two decades, ANNs have been used widely in the process of drug discovery.In this review, the authors discuss advantages and disadvantages of ANNs in drug discovery as incorporated into the quantitative structure-activity relationships (QSAR) framework. Furthermore, the authors examine the recent studies, which span over a broad area with various diseases in drug discovery. In addition, the authors attempt to answer the question about the expectations of the ANNs in drug discovery and discuss the trends in this field.The old pitfalls of overtraining and interpretability are still present with ANNs. However, despite these pitfalls, the authors believe that ANNs have likely met many of the expectations of researchers and are still considered as excellent tools for nonlinear data modeling in QSAR. It is likely that ANNs will continue to be used in drug development in the future." @default.
- W2346751919 created "2016-06-24" @default.
- W2346751919 creator A5077868077 @default.
- W2346751919 creator A5090707029 @default.
- W2346751919 date "2016-05-30" @default.
- W2346751919 modified "2023-10-17" @default.
- W2346751919 title "Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?" @default.
- W2346751919 cites W1567512734 @default.
- W2346751919 cites W1582833322 @default.
- W2346751919 cites W1596886411 @default.
- W2346751919 cites W1895919974 @default.
- W2346751919 cites W1964976889 @default.
- W2346751919 cites W1972085473 @default.
- W2346751919 cites W1972321139 @default.
- W2346751919 cites W1978508948 @default.
- W2346751919 cites W1984290631 @default.
- W2346751919 cites W1986357594 @default.
- W2346751919 cites W1987163323 @default.
- W2346751919 cites W1987856868 @default.
- W2346751919 cites W1993492933 @default.
- W2346751919 cites W1995341919 @default.
- W2346751919 cites W1995456766 @default.
- W2346751919 cites W2002878672 @default.
- W2346751919 cites W2008229202 @default.
- W2346751919 cites W2010611103 @default.
- W2346751919 cites W2011422283 @default.
- W2346751919 cites W2011771098 @default.
- W2346751919 cites W2012887432 @default.
- W2346751919 cites W2024899621 @default.
- W2346751919 cites W2026610312 @default.
- W2346751919 cites W2030577248 @default.
- W2346751919 cites W2031494703 @default.
- W2346751919 cites W2032703161 @default.
- W2346751919 cites W2034027234 @default.
- W2346751919 cites W2035805239 @default.
- W2346751919 cites W2036465798 @default.
- W2346751919 cites W2037788267 @default.
- W2346751919 cites W2039196793 @default.
- W2346751919 cites W2040459007 @default.
- W2346751919 cites W2046588282 @default.
- W2346751919 cites W2047909810 @default.
- W2346751919 cites W2055394288 @default.
- W2346751919 cites W2055776987 @default.
- W2346751919 cites W2060672328 @default.
- W2346751919 cites W2071551353 @default.
- W2346751919 cites W2072462334 @default.
- W2346751919 cites W2079198822 @default.
- W2346751919 cites W2081709350 @default.
- W2346751919 cites W2083467923 @default.
- W2346751919 cites W2091339578 @default.
- W2346751919 cites W2094353543 @default.
- W2346751919 cites W2117071136 @default.
- W2346751919 cites W2119505104 @default.
- W2346751919 cites W2123197799 @default.
- W2346751919 cites W2128245586 @default.
- W2346751919 cites W2132577466 @default.
- W2346751919 cites W2141241945 @default.
- W2346751919 cites W2146269486 @default.
- W2346751919 cites W2146488644 @default.
- W2346751919 cites W2150502887 @default.
- W2346751919 cites W2150555232 @default.
- W2346751919 cites W2153190755 @default.
- W2346751919 cites W2160422165 @default.
- W2346751919 cites W2165442133 @default.
- W2346751919 cites W2168990503 @default.
- W2346751919 cites W2292706538 @default.
- W2346751919 cites W2321125735 @default.
- W2346751919 cites W2416552118 @default.
- W2346751919 cites W2572787886 @default.
- W2346751919 cites W2757988982 @default.
- W2346751919 cites W3019294348 @default.
- W2346751919 cites W4232670376 @default.
- W2346751919 doi "https://doi.org/10.1080/17460441.2016.1186876" @default.
- W2346751919 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27149299" @default.
- W2346751919 hasPublicationYear "2016" @default.
- W2346751919 type Work @default.
- W2346751919 sameAs 2346751919 @default.
- W2346751919 citedByCount "27" @default.
- W2346751919 countsByYear W23467519192016 @default.
- W2346751919 countsByYear W23467519192017 @default.
- W2346751919 countsByYear W23467519192018 @default.
- W2346751919 countsByYear W23467519192019 @default.
- W2346751919 countsByYear W23467519192020 @default.
- W2346751919 countsByYear W23467519192021 @default.
- W2346751919 countsByYear W23467519192022 @default.
- W2346751919 countsByYear W23467519192023 @default.
- W2346751919 crossrefType "journal-article" @default.
- W2346751919 hasAuthorship W2346751919A5077868077 @default.
- W2346751919 hasAuthorship W2346751919A5090707029 @default.
- W2346751919 hasConcept C111919701 @default.
- W2346751919 hasConcept C119857082 @default.
- W2346751919 hasConcept C127413603 @default.
- W2346751919 hasConcept C154945302 @default.
- W2346751919 hasConcept C164126121 @default.
- W2346751919 hasConcept C183696295 @default.
- W2346751919 hasConcept C202444582 @default.
- W2346751919 hasConcept C2522767166 @default.
- W2346751919 hasConcept C2781067378 @default.