Matches in SemOpenAlex for { <https://semopenalex.org/work/W2347140512> ?p ?o ?g. }
- W2347140512 endingPage "766" @default.
- W2347140512 startingPage "754" @default.
- W2347140512 abstract "Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented." @default.
- W2347140512 created "2016-06-24" @default.
- W2347140512 creator A5015367815 @default.
- W2347140512 creator A5049255136 @default.
- W2347140512 creator A5058425659 @default.
- W2347140512 creator A5060326875 @default.
- W2347140512 date "2016-07-01" @default.
- W2347140512 modified "2023-09-29" @default.
- W2347140512 title "Streamflow forecasting using functional regression" @default.
- W2347140512 cites W1575463142 @default.
- W2347140512 cites W1813490013 @default.
- W2347140512 cites W1846172396 @default.
- W2347140512 cites W1963713509 @default.
- W2347140512 cites W1968293479 @default.
- W2347140512 cites W1969816229 @default.
- W2347140512 cites W1978002454 @default.
- W2347140512 cites W1981017347 @default.
- W2347140512 cites W1982717852 @default.
- W2347140512 cites W1985817801 @default.
- W2347140512 cites W1993179247 @default.
- W2347140512 cites W1993673615 @default.
- W2347140512 cites W1994042169 @default.
- W2347140512 cites W2003390846 @default.
- W2347140512 cites W2008090122 @default.
- W2347140512 cites W2018767964 @default.
- W2347140512 cites W2019451733 @default.
- W2347140512 cites W2021284437 @default.
- W2347140512 cites W2021708609 @default.
- W2347140512 cites W2024079685 @default.
- W2347140512 cites W2025122406 @default.
- W2347140512 cites W2027515083 @default.
- W2347140512 cites W2027550303 @default.
- W2347140512 cites W2031381243 @default.
- W2347140512 cites W2038580754 @default.
- W2347140512 cites W2042809187 @default.
- W2347140512 cites W2045912693 @default.
- W2347140512 cites W2046835809 @default.
- W2347140512 cites W2052872829 @default.
- W2347140512 cites W2057330883 @default.
- W2347140512 cites W2058163360 @default.
- W2347140512 cites W2072531590 @default.
- W2347140512 cites W2083825693 @default.
- W2347140512 cites W2090382476 @default.
- W2347140512 cites W2090598548 @default.
- W2347140512 cites W2094054185 @default.
- W2347140512 cites W2094866588 @default.
- W2347140512 cites W2102017823 @default.
- W2347140512 cites W2114200978 @default.
- W2347140512 cites W2118576139 @default.
- W2347140512 cites W2124120883 @default.
- W2347140512 cites W2144380346 @default.
- W2347140512 cites W2144824989 @default.
- W2347140512 cites W2157533206 @default.
- W2347140512 cites W2163209546 @default.
- W2347140512 cites W2164357544 @default.
- W2347140512 cites W2165872689 @default.
- W2347140512 cites W2166163519 @default.
- W2347140512 cites W4234698323 @default.
- W2347140512 cites W4234851478 @default.
- W2347140512 cites W4298870098 @default.
- W2347140512 doi "https://doi.org/10.1016/j.jhydrol.2016.04.048" @default.
- W2347140512 hasPublicationYear "2016" @default.
- W2347140512 type Work @default.
- W2347140512 sameAs 2347140512 @default.
- W2347140512 citedByCount "31" @default.
- W2347140512 countsByYear W23471405122016 @default.
- W2347140512 countsByYear W23471405122017 @default.
- W2347140512 countsByYear W23471405122018 @default.
- W2347140512 countsByYear W23471405122019 @default.
- W2347140512 countsByYear W23471405122020 @default.
- W2347140512 countsByYear W23471405122021 @default.
- W2347140512 countsByYear W23471405122022 @default.
- W2347140512 countsByYear W23471405122023 @default.
- W2347140512 crossrefType "journal-article" @default.
- W2347140512 hasAuthorship W2347140512A5015367815 @default.
- W2347140512 hasAuthorship W2347140512A5049255136 @default.
- W2347140512 hasAuthorship W2347140512A5058425659 @default.
- W2347140512 hasAuthorship W2347140512A5060326875 @default.
- W2347140512 hasBestOaLocation W23471405123 @default.
- W2347140512 hasConcept C105795698 @default.
- W2347140512 hasConcept C119857082 @default.
- W2347140512 hasConcept C126645576 @default.
- W2347140512 hasConcept C149782125 @default.
- W2347140512 hasConcept C152877465 @default.
- W2347140512 hasConcept C163175372 @default.
- W2347140512 hasConcept C205649164 @default.
- W2347140512 hasConcept C2524010 @default.
- W2347140512 hasConcept C33923547 @default.
- W2347140512 hasConcept C38349280 @default.
- W2347140512 hasConcept C41008148 @default.
- W2347140512 hasConcept C48921125 @default.
- W2347140512 hasConcept C51820054 @default.
- W2347140512 hasConcept C53739315 @default.
- W2347140512 hasConcept C58640448 @default.
- W2347140512 hasConcept C83546350 @default.
- W2347140512 hasConceptScore W2347140512C105795698 @default.
- W2347140512 hasConceptScore W2347140512C119857082 @default.
- W2347140512 hasConceptScore W2347140512C126645576 @default.