Matches in SemOpenAlex for { <https://semopenalex.org/work/W2349276423> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2349276423 abstract "Widely used in the optimization of product or process design,robust parameters can effectively improve product quality and economic benefits.A company needs to consider multiple quality attributes in product and process design in order to successfully compete with rivals.Although design optimization of multiple quality characteristics plays a central role in continuous quality improvement activities,it needs to resolve some problems.For instance,the current literature usually ignores the correlation between quality characteristics.This paper tries to resolve this major problem by using the partial least-square(PLS) method and Taguchi quality loss function to measure the robustness of multiple quality characteristics.The PLS method integrates the principal component analysis,canonical correlation analysis and multiple linear regression analysis in the modeling process.The MPLS method considers independent and dependent variables.Hence,the PLS method can effectively solve multicollinearity problems between independent variables and dependent variables,and has no certain sample size requirements.Moreover,the PLS method can implement visual analysis and observe using various auxiliary analysis techniques via mapping multidimensional data in two dimensions.The correlated quality characteristics are usually converted into new synthetic variables(i.e.extracted components) with the best explanative power,which can effectively reduce dimensions of independent and dependent variables,and make it easier to deal with design optimization problems.We discussed the concrete procedure of design optimization with the correlated multiple quality characteristics.The first section of the paper used Taguchi's quality loss function to compute the quality loss of each quality attribute.The second section of the paper created a regression model to analyze the relationship between independent(i.e.controllable and noise factors) and dependent variables(i.e.quality loss of each quality attribute).The importance of each factor was also investigated via the variable importance in projection(VIP) index.We then identified significant factors by the degree of their importance.The third section of the paper established an objective function using optimal conditions,and calculated the effects of different factors using the normalized value of the objective function.The last section of the paper computed the normalized optimization loss residual(NOLR) of different factors and their combinations.Our research results validate research findings of previous studies and improve the optimization of factor combination.Different from the principal component analysis and improved principal component analysis,this paper uses a novel approach to effectively reduce the number of dimensions for multiple responses and conflicts caused by multi-response optimization problems.Moreover,the design optimization method of multiple quality characteristics based on PLS can take full advantage of various auxiliary analysis technologies to obtain more precise information.We were able to obtain a better predictive model using the cross validation analysis.Significant factors were identified using VIP indices.The discriminant analysis of specific samples was analyzed using the T2 ellipse diagram to reduce the influence of outliers on the regression model.More importantly,the manufacturing process of complex products involves a high degree of correlation between variables.This paper makes theoretical and practical contributions to the quality management field." @default.
- W2349276423 created "2016-06-24" @default.
- W2349276423 creator A5007679207 @default.
- W2349276423 date "2011-01-01" @default.
- W2349276423 modified "2023-09-24" @default.
- W2349276423 title "Optimization Design of Correlated Multiple Quality Characteristics" @default.
- W2349276423 hasPublicationYear "2011" @default.
- W2349276423 type Work @default.
- W2349276423 sameAs 2349276423 @default.
- W2349276423 citedByCount "1" @default.
- W2349276423 countsByYear W23492764232014 @default.
- W2349276423 crossrefType "proceedings-article" @default.
- W2349276423 hasAuthorship W2349276423A5007679207 @default.
- W2349276423 hasConcept C104317684 @default.
- W2349276423 hasConcept C111472728 @default.
- W2349276423 hasConcept C119857082 @default.
- W2349276423 hasConcept C120823896 @default.
- W2349276423 hasConcept C124101348 @default.
- W2349276423 hasConcept C126255220 @default.
- W2349276423 hasConcept C127413603 @default.
- W2349276423 hasConcept C138885662 @default.
- W2349276423 hasConcept C152877465 @default.
- W2349276423 hasConcept C153874254 @default.
- W2349276423 hasConcept C154945302 @default.
- W2349276423 hasConcept C185592680 @default.
- W2349276423 hasConcept C189285262 @default.
- W2349276423 hasConcept C200601418 @default.
- W2349276423 hasConcept C2524010 @default.
- W2349276423 hasConcept C27438332 @default.
- W2349276423 hasConcept C2779530757 @default.
- W2349276423 hasConcept C2780009758 @default.
- W2349276423 hasConcept C33923547 @default.
- W2349276423 hasConcept C41008148 @default.
- W2349276423 hasConcept C48921125 @default.
- W2349276423 hasConcept C55493867 @default.
- W2349276423 hasConcept C63479239 @default.
- W2349276423 hasConcept C83469408 @default.
- W2349276423 hasConcept C90673727 @default.
- W2349276423 hasConceptScore W2349276423C104317684 @default.
- W2349276423 hasConceptScore W2349276423C111472728 @default.
- W2349276423 hasConceptScore W2349276423C119857082 @default.
- W2349276423 hasConceptScore W2349276423C120823896 @default.
- W2349276423 hasConceptScore W2349276423C124101348 @default.
- W2349276423 hasConceptScore W2349276423C126255220 @default.
- W2349276423 hasConceptScore W2349276423C127413603 @default.
- W2349276423 hasConceptScore W2349276423C138885662 @default.
- W2349276423 hasConceptScore W2349276423C152877465 @default.
- W2349276423 hasConceptScore W2349276423C153874254 @default.
- W2349276423 hasConceptScore W2349276423C154945302 @default.
- W2349276423 hasConceptScore W2349276423C185592680 @default.
- W2349276423 hasConceptScore W2349276423C189285262 @default.
- W2349276423 hasConceptScore W2349276423C200601418 @default.
- W2349276423 hasConceptScore W2349276423C2524010 @default.
- W2349276423 hasConceptScore W2349276423C27438332 @default.
- W2349276423 hasConceptScore W2349276423C2779530757 @default.
- W2349276423 hasConceptScore W2349276423C2780009758 @default.
- W2349276423 hasConceptScore W2349276423C33923547 @default.
- W2349276423 hasConceptScore W2349276423C41008148 @default.
- W2349276423 hasConceptScore W2349276423C48921125 @default.
- W2349276423 hasConceptScore W2349276423C55493867 @default.
- W2349276423 hasConceptScore W2349276423C63479239 @default.
- W2349276423 hasConceptScore W2349276423C83469408 @default.
- W2349276423 hasConceptScore W2349276423C90673727 @default.
- W2349276423 hasLocation W23492764231 @default.
- W2349276423 hasOpenAccess W2349276423 @default.
- W2349276423 hasPrimaryLocation W23492764231 @default.
- W2349276423 hasRelatedWork W1989016147 @default.
- W2349276423 hasRelatedWork W2041198409 @default.
- W2349276423 hasRelatedWork W2050409183 @default.
- W2349276423 hasRelatedWork W2062288291 @default.
- W2349276423 hasRelatedWork W2076752440 @default.
- W2349276423 hasRelatedWork W2085457346 @default.
- W2349276423 hasRelatedWork W2092837001 @default.
- W2349276423 hasRelatedWork W2369740854 @default.
- W2349276423 hasRelatedWork W2376122449 @default.
- W2349276423 hasRelatedWork W2388481849 @default.
- W2349276423 hasRelatedWork W2584042048 @default.
- W2349276423 hasRelatedWork W2771660086 @default.
- W2349276423 hasRelatedWork W3127704260 @default.
- W2349276423 hasRelatedWork W39995151 @default.
- W2349276423 hasRelatedWork W94428053 @default.
- W2349276423 hasRelatedWork W993362171 @default.
- W2349276423 hasRelatedWork W2054167306 @default.
- W2349276423 hasRelatedWork W2122996621 @default.
- W2349276423 hasRelatedWork W2849331809 @default.
- W2349276423 hasRelatedWork W2992511084 @default.
- W2349276423 isParatext "false" @default.
- W2349276423 isRetracted "false" @default.
- W2349276423 magId "2349276423" @default.
- W2349276423 workType "article" @default.