Matches in SemOpenAlex for { <https://semopenalex.org/work/W2354689145> ?p ?o ?g. }
- W2354689145 abstract "An emerging characteristic of modern computer systems is that it is becoming ever more frequent that the amount of communication involved in a solution to a given problem is the determining cost factor. In other words, the convenient abstraction of a random access memory machine performing sequential operations does not adequately reflect reality anymore. Rather, a multitude of spatially separated agents cooperates in solving a problem, where at any time each individual agent has a limited view of the entire system’s state. As a result, coordinating these agents’ efforts in a way making best possible use of the system’s resources becomes a fascinating and challenging task. This dissertation treats of several such coordination problems arising in distributed systems. In the clock synchronization problem, devices carry clocks whose times should agree to the best possible degree. As these clocks are not perfect, the devices need to perpetually resynchronize by exchanging messages repeatedly. We consider two different varieties of this problem. First, we examine the problem in sensor networks, where for the purpose of energy conservation it is mandatory to reduce communication to a minimum. We give an algorithm that achieves an asymptotically optimal maximal clock difference throughout the network using a minimal number of transmissions. Subsequently, we explore a worst-case model allowing for arbitrary network dynamics, i.e., network links may fail and (re)appear at arbitrary times. For this model, we devise an algorithm achieving an asymptotically optimal gradient property. That is, if two devices in a larger network have access to precise estimates of each other’s clock values, their clock difference is much smaller than the maximal one. Naturally, this property can only hold for devices that had such estimates for a sufficiently long period of time. We prove that the time span necessary for our algorithm to fully establish the gradient property when better estimates become available is also asymptotically optimal. Many load balancing tasks can be abstracted as distributing n balls as evenly as possible into n bins. In a distributed setting, we assume the balls and bins to act as independent entities that seek to coordinate at a minimal communication complexity. We show that under this constraint, a natural class of algorithms requires a small, but non-constant number of communication rounds to achieve a constant maximum bin load. We complement the respective bounds by demonstrating that if any of the preconditions of the lower bound is dropped, a constant-time solution is possible. Finally, we consider two basic combinatorial structures, maximal independent sets and dominating sets. A maximal independent set is a subset of the agents containing no pair of agents that can communicate directly, while there is no agent that can be added to the set without destroying this property. A dominating set is a subset of the agents that—as a whole—can contact all agents by direct communication. For several families of graphs, we shed new light on the distributed complexity of computing dominating sets of approximatively minimal size or maximal independent sets, respectively." @default.
- W2354689145 created "2016-06-24" @default.
- W2354689145 creator A5006005471 @default.
- W2354689145 date "2011-01-01" @default.
- W2354689145 modified "2023-09-23" @default.
- W2354689145 title "Synchronization and Symmetry Breaking in Distributed Systems" @default.
- W2354689145 cites W1497028507 @default.
- W2354689145 cites W1502920553 @default.
- W2354689145 cites W1523755288 @default.
- W2354689145 cites W1523860193 @default.
- W2354689145 cites W1548544878 @default.
- W2354689145 cites W1552841082 @default.
- W2354689145 cites W1554293633 @default.
- W2354689145 cites W1564095107 @default.
- W2354689145 cites W1568961751 @default.
- W2354689145 cites W1576764966 @default.
- W2354689145 cites W1579488146 @default.
- W2354689145 cites W1869515244 @default.
- W2354689145 cites W1945440063 @default.
- W2354689145 cites W1957963525 @default.
- W2354689145 cites W1964089073 @default.
- W2354689145 cites W1964932074 @default.
- W2354689145 cites W1968904909 @default.
- W2354689145 cites W1970330908 @default.
- W2354689145 cites W1970745521 @default.
- W2354689145 cites W1973501242 @default.
- W2354689145 cites W1977471818 @default.
- W2354689145 cites W1981107357 @default.
- W2354689145 cites W1984014506 @default.
- W2354689145 cites W1984164247 @default.
- W2354689145 cites W1995261392 @default.
- W2354689145 cites W1996834929 @default.
- W2354689145 cites W1997521442 @default.
- W2354689145 cites W1997707549 @default.
- W2354689145 cites W1997988698 @default.
- W2354689145 cites W1998643836 @default.
- W2354689145 cites W1999812311 @default.
- W2354689145 cites W2003159902 @default.
- W2354689145 cites W2011039300 @default.
- W2354689145 cites W2016945104 @default.
- W2354689145 cites W2021124283 @default.
- W2354689145 cites W2022155283 @default.
- W2354689145 cites W2026409515 @default.
- W2354689145 cites W2026617895 @default.
- W2354689145 cites W2030478553 @default.
- W2354689145 cites W2031518092 @default.
- W2354689145 cites W2032607682 @default.
- W2354689145 cites W2033177550 @default.
- W2354689145 cites W2034499376 @default.
- W2354689145 cites W2035918100 @default.
- W2354689145 cites W2038591001 @default.
- W2354689145 cites W2038924034 @default.
- W2354689145 cites W2039432414 @default.
- W2354689145 cites W2039856994 @default.
- W2354689145 cites W2043686474 @default.
- W2354689145 cites W2044599026 @default.
- W2354689145 cites W2054910423 @default.
- W2354689145 cites W2060690113 @default.
- W2354689145 cites W2061145134 @default.
- W2354689145 cites W2061468734 @default.
- W2354689145 cites W2066465352 @default.
- W2354689145 cites W2067661972 @default.
- W2354689145 cites W2069817080 @default.
- W2354689145 cites W2074687256 @default.
- W2354689145 cites W2077158870 @default.
- W2354689145 cites W2084316739 @default.
- W2354689145 cites W2091323212 @default.
- W2354689145 cites W2092534058 @default.
- W2354689145 cites W2094636498 @default.
- W2354689145 cites W2095343473 @default.
- W2354689145 cites W2095464745 @default.
- W2354689145 cites W2097079799 @default.
- W2354689145 cites W2098480450 @default.
- W2354689145 cites W2098888469 @default.
- W2354689145 cites W2100061495 @default.
- W2354689145 cites W2104443140 @default.
- W2354689145 cites W2105130984 @default.
- W2354689145 cites W2105749254 @default.
- W2354689145 cites W2109248051 @default.
- W2354689145 cites W2111071057 @default.
- W2354689145 cites W2111132249 @default.
- W2354689145 cites W2114650503 @default.
- W2354689145 cites W2117702591 @default.
- W2354689145 cites W2129846535 @default.
- W2354689145 cites W2132763546 @default.
- W2354689145 cites W2133276417 @default.
- W2354689145 cites W2137760789 @default.
- W2354689145 cites W2139349113 @default.
- W2354689145 cites W2142458954 @default.
- W2354689145 cites W2143229717 @default.
- W2354689145 cites W2143450555 @default.
- W2354689145 cites W2148190105 @default.
- W2354689145 cites W2149652607 @default.
- W2354689145 cites W2154007983 @default.
- W2354689145 cites W2157227400 @default.
- W2354689145 cites W2160268831 @default.
- W2354689145 cites W2167323208 @default.
- W2354689145 cites W2169062068 @default.
- W2354689145 cites W2179911242 @default.
- W2354689145 cites W2216427709 @default.