Matches in SemOpenAlex for { <https://semopenalex.org/work/W2355950521> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2355950521 abstract "The dependence structure among multivariate financial assets is a critical factor for achieving accuracy in the integrated risk measurement.Copula function is a very useful tool to describe the dependence structure between risk factors and plays an important role in the field of financial risk management.When using the Copula model,the most important thing is to judge which Copula is more suitable to describe the data dependence structure.Therefore,it is very important to do research on the selection criteria of multivariate Copula models and the goodness-of-fit test methods.However,in the field of financial risk management,most of the research has focused on bivariate cases.There is very little research on the goodness-of-fit and empirical analysis on the multivariate cases.There is still no effective solutions for the selection and goodness-of-fit test of multivariate Copula functions. Therefore,this paper proposes a selection criterion for Copula's goodness-of-fit based on the method of conditional probability integral transformation.We analyze and compare the Anderson-Darling(AD),Kolmogorov-Smirnov(KS) and Cramer-von Mises(CM) test statistics under the CPIT method with various sample sizes and different variable dimensions.In addition,we use daily data of three stock indices: SP/TSX Composite index(GSPTSE) in Canada's stock market,INMEX.MX in Mexico's stock market and NASDAQ-100(NDX) in America's stock market.Our samples consist of 1606 adjusted-closing price in each of the three indices.We compare the CPIT test statistics with two other methods based on kernel the density estimate and the maximum likelihood estimate. The empirical studies results show that in terms of the power of goodness-of-fit test,the approach we proposed has a better performance.This method is able to solve the puzzle in selecting multivariate Copula models and its goodness-of-fit test is accurate and stable.Specifically,CM test statistic is more powerful in small samples;however in large samples the test is weaker than AD and KS tests.We also show that the AD test has a strong testing ability in large samples.On the other hand,the statistics based on the kernel density estimate method is more appropriate for selecting the best Copula functions under a large sample.The reason is that in a large sample,the kernel function selection has little effect on the estimated distribution.However,in a small sample,the choice of bandwidth in kernel estimation has a big effect on the estimation of marginal distribution,which may result in an unstable result.Although the test based on maximum likelihood estimate is able to choose Gauss Copula function as the best Copula to describe the correlation pattern between datasets,the method is quite unstable.As a result,its capacity of choosing the optimal Copula function is relatively weak." @default.
- W2355950521 created "2016-06-24" @default.
- W2355950521 creator A5012190149 @default.
- W2355950521 date "2012-01-01" @default.
- W2355950521 modified "2023-09-27" @default.
- W2355950521 title "Selection for Multivariate Copula Based on Conditional Probability Integral Transformation" @default.
- W2355950521 hasPublicationYear "2012" @default.
- W2355950521 type Work @default.
- W2355950521 sameAs 2355950521 @default.
- W2355950521 citedByCount "0" @default.
- W2355950521 crossrefType "proceedings-article" @default.
- W2355950521 hasAuthorship W2355950521A5012190149 @default.
- W2355950521 hasConcept C105795698 @default.
- W2355950521 hasConcept C132480984 @default.
- W2355950521 hasConcept C149782125 @default.
- W2355950521 hasConcept C161584116 @default.
- W2355950521 hasConcept C166957645 @default.
- W2355950521 hasConcept C17618745 @default.
- W2355950521 hasConcept C205649164 @default.
- W2355950521 hasConcept C2779343474 @default.
- W2355950521 hasConcept C2780299701 @default.
- W2355950521 hasConcept C33923547 @default.
- W2355950521 hasConcept C64341305 @default.
- W2355950521 hasConceptScore W2355950521C105795698 @default.
- W2355950521 hasConceptScore W2355950521C132480984 @default.
- W2355950521 hasConceptScore W2355950521C149782125 @default.
- W2355950521 hasConceptScore W2355950521C161584116 @default.
- W2355950521 hasConceptScore W2355950521C166957645 @default.
- W2355950521 hasConceptScore W2355950521C17618745 @default.
- W2355950521 hasConceptScore W2355950521C205649164 @default.
- W2355950521 hasConceptScore W2355950521C2779343474 @default.
- W2355950521 hasConceptScore W2355950521C2780299701 @default.
- W2355950521 hasConceptScore W2355950521C33923547 @default.
- W2355950521 hasConceptScore W2355950521C64341305 @default.
- W2355950521 hasLocation W23559505211 @default.
- W2355950521 hasOpenAccess W2355950521 @default.
- W2355950521 hasPrimaryLocation W23559505211 @default.
- W2355950521 hasRelatedWork W1967957642 @default.
- W2355950521 hasRelatedWork W1972251748 @default.
- W2355950521 hasRelatedWork W1991152088 @default.
- W2355950521 hasRelatedWork W2016873109 @default.
- W2355950521 hasRelatedWork W2018522583 @default.
- W2355950521 hasRelatedWork W2075241123 @default.
- W2355950521 hasRelatedWork W2126829392 @default.
- W2355950521 hasRelatedWork W2321742077 @default.
- W2355950521 hasRelatedWork W2357858436 @default.
- W2355950521 hasRelatedWork W2366152171 @default.
- W2355950521 hasRelatedWork W2393648562 @default.
- W2355950521 hasRelatedWork W2526443210 @default.
- W2355950521 hasRelatedWork W2561469662 @default.
- W2355950521 hasRelatedWork W2884387179 @default.
- W2355950521 hasRelatedWork W2897538313 @default.
- W2355950521 hasRelatedWork W3008502663 @default.
- W2355950521 hasRelatedWork W3123266222 @default.
- W2355950521 hasRelatedWork W3124508645 @default.
- W2355950521 hasRelatedWork W3126047263 @default.
- W2355950521 hasRelatedWork W570503440 @default.
- W2355950521 isParatext "false" @default.
- W2355950521 isRetracted "false" @default.
- W2355950521 magId "2355950521" @default.
- W2355950521 workType "article" @default.