Matches in SemOpenAlex for { <https://semopenalex.org/work/W2358647570> ?p ?o ?g. }
- W2358647570 abstract "Computer-Aided Process Planning (CAPP) plays a significant role in modern manufacturing system, and knowledge-based CAPP system is one of the predominant trends of its development. How to discover and acquire valuable process knowledge from the existing process data by applying data mining methodology is always the key technology and bottleneck issue for improving the application level of knowledge-based CAPP systems. As an important knowledge of process flow, typical process routes have a vital influence on the accuracy and efficiency of part family oriented process planning. In this paper, a novel approach for elicitation of typical process routes through the combination of granular computing theory and bioinformatics technology is put forward. The sequence alignment technology in bioinformatics is used to establish the best alignment between two process routes, based on which their distance is exactly calculated. According to the distances between process routes to be analysed, the neighborhood-based granulation method in granular computing theory is applied to construct a series of process information granular layers with different granularity so as to acquire typical process routes from process information granules contained in an optimal granular layer. Two application examples not only adequately validate the applicability and effectiveness of the proposed approach, but also fully demonstrate its advantages in the quality and efficiency of typical process routes elicitation. HighlightsThe proposed method provides a completely new way for process knowledge acquisition.This approach improves quality and efficiency of typical process routes elicitation.Process routes alignment is clearer and more intuitive than operation encoding.A quantitative criterion for selecting a most appropriate granularity is presented.Diversity of typical process routes can be suited to different levels of part family." @default.
- W2358647570 created "2016-06-24" @default.
- W2358647570 creator A5031616086 @default.
- W2358647570 creator A5059128927 @default.
- W2358647570 date "2015-10-01" @default.
- W2358647570 modified "2023-09-30" @default.
- W2358647570 title "Integrating granular computing and bioinformatics technology for typical process routes elicitation: A process knowledge acquisition approach" @default.
- W2358647570 cites W1947957290 @default.
- W2358647570 cites W1965138737 @default.
- W2358647570 cites W1973334671 @default.
- W2358647570 cites W1978603136 @default.
- W2358647570 cites W1981487968 @default.
- W2358647570 cites W1984525527 @default.
- W2358647570 cites W198866323 @default.
- W2358647570 cites W1996653274 @default.
- W2358647570 cites W2015371589 @default.
- W2358647570 cites W2017637081 @default.
- W2358647570 cites W2022361146 @default.
- W2358647570 cites W2029810562 @default.
- W2358647570 cites W2032147932 @default.
- W2358647570 cites W2037104952 @default.
- W2358647570 cites W2048464588 @default.
- W2358647570 cites W2059982574 @default.
- W2358647570 cites W2069954116 @default.
- W2358647570 cites W2073922189 @default.
- W2358647570 cites W2078068511 @default.
- W2358647570 cites W2090933003 @default.
- W2358647570 cites W2091453296 @default.
- W2358647570 cites W2097498222 @default.
- W2358647570 cites W2098459840 @default.
- W2358647570 cites W2101955371 @default.
- W2358647570 cites W2131470105 @default.
- W2358647570 cites W2140190241 @default.
- W2358647570 cites W2143515036 @default.
- W2358647570 cites W2157580877 @default.
- W2358647570 cites W2158633287 @default.
- W2358647570 cites W2159438193 @default.
- W2358647570 cites W2162605052 @default.
- W2358647570 cites W2166490244 @default.
- W2358647570 cites W2251121927 @default.
- W2358647570 cites W2393784615 @default.
- W2358647570 cites W2497439958 @default.
- W2358647570 cites W2912707296 @default.
- W2358647570 cites W3204616723 @default.
- W2358647570 doi "https://doi.org/10.1016/j.engappai.2015.06.014" @default.
- W2358647570 hasPublicationYear "2015" @default.
- W2358647570 type Work @default.
- W2358647570 sameAs 2358647570 @default.
- W2358647570 citedByCount "11" @default.
- W2358647570 countsByYear W23586475702018 @default.
- W2358647570 countsByYear W23586475702019 @default.
- W2358647570 countsByYear W23586475702020 @default.
- W2358647570 countsByYear W23586475702021 @default.
- W2358647570 countsByYear W23586475702022 @default.
- W2358647570 countsByYear W23586475702023 @default.
- W2358647570 crossrefType "journal-article" @default.
- W2358647570 hasAuthorship W2358647570A5031616086 @default.
- W2358647570 hasAuthorship W2358647570A5059128927 @default.
- W2358647570 hasConcept C111012933 @default.
- W2358647570 hasConcept C111472728 @default.
- W2358647570 hasConcept C111919701 @default.
- W2358647570 hasConcept C124101348 @default.
- W2358647570 hasConcept C138885662 @default.
- W2358647570 hasConcept C149635348 @default.
- W2358647570 hasConcept C17209119 @default.
- W2358647570 hasConcept C177774035 @default.
- W2358647570 hasConcept C199360897 @default.
- W2358647570 hasConcept C26517878 @default.
- W2358647570 hasConcept C2779530757 @default.
- W2358647570 hasConcept C2780513914 @default.
- W2358647570 hasConcept C2780801425 @default.
- W2358647570 hasConcept C38652104 @default.
- W2358647570 hasConcept C41008148 @default.
- W2358647570 hasConcept C98045186 @default.
- W2358647570 hasConceptScore W2358647570C111012933 @default.
- W2358647570 hasConceptScore W2358647570C111472728 @default.
- W2358647570 hasConceptScore W2358647570C111919701 @default.
- W2358647570 hasConceptScore W2358647570C124101348 @default.
- W2358647570 hasConceptScore W2358647570C138885662 @default.
- W2358647570 hasConceptScore W2358647570C149635348 @default.
- W2358647570 hasConceptScore W2358647570C17209119 @default.
- W2358647570 hasConceptScore W2358647570C177774035 @default.
- W2358647570 hasConceptScore W2358647570C199360897 @default.
- W2358647570 hasConceptScore W2358647570C26517878 @default.
- W2358647570 hasConceptScore W2358647570C2779530757 @default.
- W2358647570 hasConceptScore W2358647570C2780513914 @default.
- W2358647570 hasConceptScore W2358647570C2780801425 @default.
- W2358647570 hasConceptScore W2358647570C38652104 @default.
- W2358647570 hasConceptScore W2358647570C41008148 @default.
- W2358647570 hasConceptScore W2358647570C98045186 @default.
- W2358647570 hasLocation W23586475701 @default.
- W2358647570 hasOpenAccess W2358647570 @default.
- W2358647570 hasPrimaryLocation W23586475701 @default.
- W2358647570 hasRelatedWork W1487489911 @default.
- W2358647570 hasRelatedWork W1546985454 @default.
- W2358647570 hasRelatedWork W2003832519 @default.
- W2358647570 hasRelatedWork W2004195816 @default.
- W2358647570 hasRelatedWork W2011518426 @default.
- W2358647570 hasRelatedWork W2027725852 @default.
- W2358647570 hasRelatedWork W2040645322 @default.