Matches in SemOpenAlex for { <https://semopenalex.org/work/W2361283035> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2361283035 abstract "Historically,remote sensing(RS) and crop growth modeling have been used independently to monitor and predict crop growth.This paper reports a growth prediction technique for winter wheat(Triticum aestivum L.) based on the integration of ground-based and space-borne remote sensing data and a winter wheat growth model(WheatGrow).Leaf area index(LAI) and leaf nitrogen accumulation(LNA) of winter wheat were estimated using ASD field spectrometer,HJ-1 A/B CCD,and Landsat-5 TM data and statistical remote sensing estimation models.This information was integrated with the WheatGrow model in three different growth stages(jointing,heading,and grain filling).Management parameters included sowing date,sowing rate,and nitrogen rate.Parameterization for regionalization of the integrated model was accomplished using the Shuffled Complex Evolution-University of Arizona(SCE-UA) optimization algorithm.This integrated technique was tested on independent datasets acquired from three winter wheat field tests in different years on different winter wheat varieties and at different treatments of nitrogen rates and sowing densities,and from data obtained from study areas in Hai'an and Rugao counties in Jiangsu Province(in central eastern China),both of which are main production areas of high-quality,low-gluten wheat in China.The results showed that LNA,one of the most sensitive parameters within WheatGrow,was better than LAI as an integrated parameter for crop model parameter initialization with the best integration period being the heading stage.RMSE values were 5.32 days,14.81 kg/hm2 and 14.11 kg/hm2 for sowing date,sowing rate,and nitrogen rate based on the ground spectral datasets,and 6.55 days,13.94 kg/hm2 and 84.97 kg/hm2 based on the space-borne satellite images.The crop model parameterization results were poorest when the grain filling stage was used as the integration period,probably because crop growth at earlier stages would be more influenced by agronomic management measures.In addition,predicted results well described the temporal and spatial distribution of winter wheat growth status and productivity in the study area,with relative error values of 0.13,0.18 and 0.03 for LAI,LNA and grain yield based on the ground spectral datasets,and 0.22,0.23 and 0.06 based on the satellite images.The error may be due to the limited simulation ability of the WheatGrow model,or it may have been generated from the process of remote sensing information extraction and the statistical remote sensing estimating models,all of which need improvement.Nevertheless,the study has provided an important step toward more routine use of using remote sensing and crop modeling techniques together to improve our ability of regional monitoring and yield prediction of winter wheat." @default.
- W2361283035 created "2016-06-24" @default.
- W2361283035 creator A5017022122 @default.
- W2361283035 creator A5051118200 @default.
- W2361283035 date "2011-01-01" @default.
- W2361283035 modified "2023-09-26" @default.
- W2361283035 title "Predicting winter wheat growth based on integrating remote sensing and crop growth modeling techniques" @default.
- W2361283035 hasPublicationYear "2011" @default.
- W2361283035 type Work @default.
- W2361283035 sameAs 2361283035 @default.
- W2361283035 citedByCount "0" @default.
- W2361283035 crossrefType "journal-article" @default.
- W2361283035 hasAuthorship W2361283035A5017022122 @default.
- W2361283035 hasAuthorship W2361283035A5051118200 @default.
- W2361283035 hasConcept C137580998 @default.
- W2361283035 hasConcept C168741863 @default.
- W2361283035 hasConcept C205649164 @default.
- W2361283035 hasConcept C25989453 @default.
- W2361283035 hasConcept C3018661444 @default.
- W2361283035 hasConcept C33923547 @default.
- W2361283035 hasConcept C39432304 @default.
- W2361283035 hasConcept C62649853 @default.
- W2361283035 hasConcept C6557445 @default.
- W2361283035 hasConcept C86803240 @default.
- W2361283035 hasConceptScore W2361283035C137580998 @default.
- W2361283035 hasConceptScore W2361283035C168741863 @default.
- W2361283035 hasConceptScore W2361283035C205649164 @default.
- W2361283035 hasConceptScore W2361283035C25989453 @default.
- W2361283035 hasConceptScore W2361283035C3018661444 @default.
- W2361283035 hasConceptScore W2361283035C33923547 @default.
- W2361283035 hasConceptScore W2361283035C39432304 @default.
- W2361283035 hasConceptScore W2361283035C62649853 @default.
- W2361283035 hasConceptScore W2361283035C6557445 @default.
- W2361283035 hasConceptScore W2361283035C86803240 @default.
- W2361283035 hasOpenAccess W2361283035 @default.
- W2361283035 hasRelatedWork W1969021574 @default.
- W2361283035 hasRelatedWork W2012405588 @default.
- W2361283035 hasRelatedWork W2039019454 @default.
- W2361283035 hasRelatedWork W2054826427 @default.
- W2361283035 hasRelatedWork W2063016949 @default.
- W2361283035 hasRelatedWork W2096269807 @default.
- W2361283035 hasRelatedWork W2146235610 @default.
- W2361283035 hasRelatedWork W2147108019 @default.
- W2361283035 hasRelatedWork W2178531262 @default.
- W2361283035 hasRelatedWork W2349383162 @default.
- W2361283035 hasRelatedWork W2355420377 @default.
- W2361283035 hasRelatedWork W2363090383 @default.
- W2361283035 hasRelatedWork W2380836234 @default.
- W2361283035 hasRelatedWork W2380896798 @default.
- W2361283035 hasRelatedWork W2385075018 @default.
- W2361283035 hasRelatedWork W2810045082 @default.
- W2361283035 hasRelatedWork W2944702146 @default.
- W2361283035 hasRelatedWork W2958199191 @default.
- W2361283035 hasRelatedWork W2972711976 @default.
- W2361283035 hasRelatedWork W2983304769 @default.
- W2361283035 isParatext "false" @default.
- W2361283035 isRetracted "false" @default.
- W2361283035 magId "2361283035" @default.
- W2361283035 workType "article" @default.