Matches in SemOpenAlex for { <https://semopenalex.org/work/W2361494865> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2361494865 abstract "Trajectory outlier detection is significantly important in the field of data mining for moving object.TRAOD(TRAjectory Outlier Dectection Algorithm), a classic algorithm for detecting trajectory outliers, focuses on a new two-level trajectory partitioning strategy to enhance the efficiency of algorithm. The main advantage of TRAOD algorithm is the ability to detect outlying sub-trajectories. However, it has a low efficiency on abnormality detection for massive trajectory data. In order to improve the efficiency for mining trajectory outliers from massive datasets, a parallel algorithm for detecting trajectory outliers based on Map Reduce framework, which is called PTRAOD(Parallel algorithm for TRAjectory Outlier Detection), is presented. It redesigns the TRAOD algorithm based on the Map Reduce framework, and encapsulates the steps of TRAOD into its Map and Reduce functions. PTRAOD algorithm takes full advantages of the features from Hadoop platform. It firstly distributes the trajectory data into distributed computing nodes. While distributing the data, it also takes the load-balance into consideration. And after all, each node runs the same algorithms to detect abnormal trajectories. Based on PTRAOD algorithm, a grid-based parallel algorithm for detecting trajectory outliers, called GPTRAOD(Gridbased Parallel algorithm for TRAjectory Outlier Detection), is then proposed. GPTRAOD algorithm makes use of the grid index to realize regional query and reduce unnecessary calculations. At first, GPTRAOD algorithm divides the map into a series of equal-sized grids, whose size is determined with respect to each specific data.Then, the grid index is established to implement the regional query. Finally, the algorithm finds out the abnormal trajectory segments and judges whether the trajectories that contains the abnormal trajectory segments are abnormal. In general, GPTRAOD algorithm takes advantages of the gird index to realize regional query on the basis of PTRAOD algorithm, which furthermore can search abnormal trajectory on the cloud computing platform. To assess the performances of the proposed algorithms, extensive experiments were conducted. The experimental results demonstrate that the proposed two parallel detection algorithms can both successfully achieve the trajectory outlier detection. The efficiency of PTRAOD algorithm is higher than TRAOD algorithm, while GPTRAOD algorithm has the higher scalability and better speedup ratio than PTRAOD algorithm. In addition, with the rapidly expanding of datasets, GPTRAOD algorithm shows obvious advantages and increasing potentials." @default.
- W2361494865 created "2016-06-24" @default.
- W2361494865 creator A5030505803 @default.
- W2361494865 date "2015-01-01" @default.
- W2361494865 modified "2023-09-23" @default.
- W2361494865 title "A Parallel Algorithm for Detecting Trajectory Outliers Based on Map Reduce" @default.
- W2361494865 hasPublicationYear "2015" @default.
- W2361494865 type Work @default.
- W2361494865 sameAs 2361494865 @default.
- W2361494865 citedByCount "0" @default.
- W2361494865 crossrefType "journal-article" @default.
- W2361494865 hasAuthorship W2361494865A5030505803 @default.
- W2361494865 hasConcept C11413529 @default.
- W2361494865 hasConcept C121332964 @default.
- W2361494865 hasConcept C124101348 @default.
- W2361494865 hasConcept C1276947 @default.
- W2361494865 hasConcept C13662910 @default.
- W2361494865 hasConcept C154945302 @default.
- W2361494865 hasConcept C187691185 @default.
- W2361494865 hasConcept C2524010 @default.
- W2361494865 hasConcept C33923547 @default.
- W2361494865 hasConcept C41008148 @default.
- W2361494865 hasConcept C739882 @default.
- W2361494865 hasConcept C79337645 @default.
- W2361494865 hasConceptScore W2361494865C11413529 @default.
- W2361494865 hasConceptScore W2361494865C121332964 @default.
- W2361494865 hasConceptScore W2361494865C124101348 @default.
- W2361494865 hasConceptScore W2361494865C1276947 @default.
- W2361494865 hasConceptScore W2361494865C13662910 @default.
- W2361494865 hasConceptScore W2361494865C154945302 @default.
- W2361494865 hasConceptScore W2361494865C187691185 @default.
- W2361494865 hasConceptScore W2361494865C2524010 @default.
- W2361494865 hasConceptScore W2361494865C33923547 @default.
- W2361494865 hasConceptScore W2361494865C41008148 @default.
- W2361494865 hasConceptScore W2361494865C739882 @default.
- W2361494865 hasConceptScore W2361494865C79337645 @default.
- W2361494865 hasLocation W23614948651 @default.
- W2361494865 hasOpenAccess W2361494865 @default.
- W2361494865 hasPrimaryLocation W23614948651 @default.
- W2361494865 hasRelatedWork W1841611015 @default.
- W2361494865 hasRelatedWork W2060505896 @default.
- W2361494865 hasRelatedWork W2074043211 @default.
- W2361494865 hasRelatedWork W2087395221 @default.
- W2361494865 hasRelatedWork W2100017804 @default.
- W2361494865 hasRelatedWork W2113215030 @default.
- W2361494865 hasRelatedWork W2248384411 @default.
- W2361494865 hasRelatedWork W2350972897 @default.
- W2361494865 hasRelatedWork W2353734331 @default.
- W2361494865 hasRelatedWork W2360456841 @default.
- W2361494865 hasRelatedWork W2368122842 @default.
- W2361494865 hasRelatedWork W2573263943 @default.
- W2361494865 hasRelatedWork W2606633748 @default.
- W2361494865 hasRelatedWork W2767402288 @default.
- W2361494865 hasRelatedWork W2792470977 @default.
- W2361494865 hasRelatedWork W2899866112 @default.
- W2361494865 hasRelatedWork W2952344739 @default.
- W2361494865 hasRelatedWork W3186715163 @default.
- W2361494865 hasRelatedWork W2933300924 @default.
- W2361494865 hasRelatedWork W3050149191 @default.
- W2361494865 isParatext "false" @default.
- W2361494865 isRetracted "false" @default.
- W2361494865 magId "2361494865" @default.
- W2361494865 workType "article" @default.