Matches in SemOpenAlex for { <https://semopenalex.org/work/W2361828105> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2361828105 abstract "In order to discern slowly varrying weak anomalies on a background of noise field and to deal with problem like limiting the instability of the solution due to high-frequency magnification of errors in the series of calculations such as the downward-continuation of potential field, this paper discusses the designing principles of an optimum linear digital filter in the least square sense. This may be transformed into the mathematical problem, namely how to select the optimum filtering function in the space of the L2 linear normed function. It would be very complicated and difficult, if the problem is to be solved directly in the space domain. We found that it may be mathematically much simplier and more rigorous, if we should directly select the trnasfer function or the wave-number response of the optimum linear filter in the wave-number domain by using the method of isoperimetric problem in calculus of variations. In this way, the expression of the transfer function of the selected optimum linear filter is quite simple, namely,L(f,k)=|Si(f, k)|2/{|Si(f,k)|2+λ|Ni(f,k)|2}where|Si(f,k)|2 and |Ni(f,k)|2 express the energy spectra (or the power spectra) of the filter input signal and noise respectively; f, k are wave numbers on the x and y directions.In regard to the above-mentioned two types of the problem and the two related optimum linear filters, the expressions of L(f,k) are the same. They differ only in the conditions of selecting the parameter (λ).After setting up the theoretical expression of the transfer function L(f,k) of the optimum linear filter, we should be able in the least square sense to examine various linear filtering methods, so far published in foreign and domestic literatures in solving the above-mentioned two types of the problems and to show that the optimum results of the linear filtering can be achieved theoretically for different signal and noise conditions. Thus, it provides theorectical criterion for designing two-dimensional linear digital filters.For the observed results of the harmonic functions of potential fields, the above theory can be applied easily to the designing of optimum linear digital filters, but only in the approximate manner." @default.
- W2361828105 created "2016-06-24" @default.
- W2361828105 creator A5081245432 @default.
- W2361828105 date "1977-01-01" @default.
- W2361828105 modified "2023-09-25" @default.
- W2361828105 title "DESIGNING PRINCIPLES OF A TWO-DIMENSIONAL OPTIMUM LINEAR DIGITAL FILTER" @default.
- W2361828105 hasPublicationYear "1977" @default.
- W2361828105 type Work @default.
- W2361828105 sameAs 2361828105 @default.
- W2361828105 citedByCount "0" @default.
- W2361828105 crossrefType "journal-article" @default.
- W2361828105 hasAuthorship W2361828105A5081245432 @default.
- W2361828105 hasConcept C106131492 @default.
- W2361828105 hasConcept C115961682 @default.
- W2361828105 hasConcept C119599485 @default.
- W2361828105 hasConcept C127413603 @default.
- W2361828105 hasConcept C134306372 @default.
- W2361828105 hasConcept C139722471 @default.
- W2361828105 hasConcept C14036430 @default.
- W2361828105 hasConcept C154945302 @default.
- W2361828105 hasConcept C19118579 @default.
- W2361828105 hasConcept C202444582 @default.
- W2361828105 hasConcept C31972630 @default.
- W2361828105 hasConcept C33923547 @default.
- W2361828105 hasConcept C36390408 @default.
- W2361828105 hasConcept C41008148 @default.
- W2361828105 hasConcept C78458016 @default.
- W2361828105 hasConcept C81299745 @default.
- W2361828105 hasConcept C86803240 @default.
- W2361828105 hasConcept C9652623 @default.
- W2361828105 hasConcept C99498987 @default.
- W2361828105 hasConceptScore W2361828105C106131492 @default.
- W2361828105 hasConceptScore W2361828105C115961682 @default.
- W2361828105 hasConceptScore W2361828105C119599485 @default.
- W2361828105 hasConceptScore W2361828105C127413603 @default.
- W2361828105 hasConceptScore W2361828105C134306372 @default.
- W2361828105 hasConceptScore W2361828105C139722471 @default.
- W2361828105 hasConceptScore W2361828105C14036430 @default.
- W2361828105 hasConceptScore W2361828105C154945302 @default.
- W2361828105 hasConceptScore W2361828105C19118579 @default.
- W2361828105 hasConceptScore W2361828105C202444582 @default.
- W2361828105 hasConceptScore W2361828105C31972630 @default.
- W2361828105 hasConceptScore W2361828105C33923547 @default.
- W2361828105 hasConceptScore W2361828105C36390408 @default.
- W2361828105 hasConceptScore W2361828105C41008148 @default.
- W2361828105 hasConceptScore W2361828105C78458016 @default.
- W2361828105 hasConceptScore W2361828105C81299745 @default.
- W2361828105 hasConceptScore W2361828105C86803240 @default.
- W2361828105 hasConceptScore W2361828105C9652623 @default.
- W2361828105 hasConceptScore W2361828105C99498987 @default.
- W2361828105 hasLocation W23618281051 @default.
- W2361828105 hasOpenAccess W2361828105 @default.
- W2361828105 hasPrimaryLocation W23618281051 @default.
- W2361828105 hasRelatedWork W1590346841 @default.
- W2361828105 hasRelatedWork W1975216283 @default.
- W2361828105 hasRelatedWork W1980605543 @default.
- W2361828105 hasRelatedWork W1983610382 @default.
- W2361828105 hasRelatedWork W2033044704 @default.
- W2361828105 hasRelatedWork W2036032496 @default.
- W2361828105 hasRelatedWork W2048167551 @default.
- W2361828105 hasRelatedWork W2053681720 @default.
- W2361828105 hasRelatedWork W205567356 @default.
- W2361828105 hasRelatedWork W2056255849 @default.
- W2361828105 hasRelatedWork W2082551816 @default.
- W2361828105 hasRelatedWork W2186705088 @default.
- W2361828105 hasRelatedWork W2215968060 @default.
- W2361828105 hasRelatedWork W2315325283 @default.
- W2361828105 hasRelatedWork W2351483209 @default.
- W2361828105 hasRelatedWork W2393451590 @default.
- W2361828105 hasRelatedWork W2908841690 @default.
- W2361828105 hasRelatedWork W3152117887 @default.
- W2361828105 hasRelatedWork W33041645 @default.
- W2361828105 hasRelatedWork W73292842 @default.
- W2361828105 isParatext "false" @default.
- W2361828105 isRetracted "false" @default.
- W2361828105 magId "2361828105" @default.
- W2361828105 workType "article" @default.