Matches in SemOpenAlex for { <https://semopenalex.org/work/W2362756151> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2362756151 abstract "This paper focuses on space-time nonlinear intelligent modeling for lattice data.Lattice data refers to attributes attached to fixed,regular or irregular,polygonal regions such as districts or census zones in two-dimensional space.Lattice data space-time analysis is aiming at detecting,modeling and predicting space-time patterns or trends of lattice attributes changed with time while spatial topological structures are simultaneously kept invariable.From the perspective of space,lattice objects have two different scale spatial properties influencing lattice data modeling: global dependence and local fluctuation.Global spatial dependence or autocorrelation quantifies the correlation of the same attribute at different spatial locations,and local spatial fluctuation or rough,coexisted with global dependence,is represented in the form of local spatial clustering of similar values or local spatial outliers.To consider simultaneously the effects of two properties above,local neural networks(NN) model is studied for space-time nonlinear autoregressive modeling.The main research contents include:(1) To reduce influence of spatial fluctuation on prediction accuracy of NN,all regions are partitioned into several subareas by an improved k-means algorithm.(2) Different partition schemes are evaluated and compared according to three essential criteria including dependence,continuity,fluctuation.Dependence means that an optimal partition must guarantee that there is real and significant spatial dependence among regions in a subarea because the results of output layer nodes in a NN model depending on the interactions of input layer nodes through hidden layers nodes.Spatial autocorrelation of a subarea can be measured by global Moran's I and its significance test can be done based on z-score of Moran's I.Continuity means that only neighboring regions can be grouped into a subarea,and this criterion is fused into the modified k-means algorithm.When the algorithm judges one region which subarea it belongs to,not only should the distance be considered to the centroid of a subarea but also the common borders between this region and the regions in a subarea.As to fluctuation,although it is impossible to make each subarea have complete spatial stability through partitioning,the less fluctuation means the better predicting results of NN model.For a subarea,standard deviation between local Moran's I of all regions in the subarea and global Moran's I of the subarea is regarded as an evaluation index to the fluctuation of the subarea.(3) Each multi-layer perceptrons(MLPs) network is used respectively in modeling and predicting for each subarea.The output nodes are the predicting values at time t of an attribute for all regions in a subarea.The input nodes are observations before time t of the same attribute of both regions in the subarea and regions neighboring to the subarea and the latter is called boundary effect.Finally,as a case study,all local models of all the subareas are trained,tested and compared with a single global MLPs network by modeling one-step-ahead prediction of an epidemic dataset which records weekly influenza cases of 94 departments in France from the first week of 1990 to the 53th of 1992.Two performance measures,including average relative variance(ARV) and dynamic similarity rate(DSR),indicate that local NN model based on partitioning has better predicting capability than global NN model.Several issues are still worth further study:(1) The initial subareas of partitioning are selected randomly in our research.In the further study,a reasonable approach should combine selection with spatial patterns,for instance considering the center of local cluster.(2) Partition criteria should be another issue and different types of spatial and space-time processes,such as rainfall,price waves,public data,etc,may have different objective criteria for choosing an optimal partition.(3) It may be more imperative to study feasible measures for quantifying global and local space-time dependence of lattice data and testing significance of this dependence." @default.
- W2362756151 created "2016-06-24" @default.
- W2362756151 creator A5028121156 @default.
- W2362756151 date "2008-01-01" @default.
- W2362756151 modified "2023-09-22" @default.
- W2362756151 title "Local Neural Networks of Space-time Modeling Based on Partitioning for Lattice Data in GIS" @default.
- W2362756151 hasPublicationYear "2008" @default.
- W2362756151 type Work @default.
- W2362756151 sameAs 2362756151 @default.
- W2362756151 citedByCount "0" @default.
- W2362756151 crossrefType "journal-article" @default.
- W2362756151 hasAuthorship W2362756151A5028121156 @default.
- W2362756151 hasConcept C105795698 @default.
- W2362756151 hasConcept C11413529 @default.
- W2362756151 hasConcept C114614502 @default.
- W2362756151 hasConcept C121332964 @default.
- W2362756151 hasConcept C121864883 @default.
- W2362756151 hasConcept C124101348 @default.
- W2362756151 hasConcept C138695830 @default.
- W2362756151 hasConcept C150060386 @default.
- W2362756151 hasConcept C154945302 @default.
- W2362756151 hasConcept C158622935 @default.
- W2362756151 hasConcept C158709400 @default.
- W2362756151 hasConcept C159620131 @default.
- W2362756151 hasConcept C159877910 @default.
- W2362756151 hasConcept C18903297 @default.
- W2362756151 hasConcept C24890656 @default.
- W2362756151 hasConcept C2781204021 @default.
- W2362756151 hasConcept C33923547 @default.
- W2362756151 hasConcept C41008148 @default.
- W2362756151 hasConcept C42812 @default.
- W2362756151 hasConcept C50644808 @default.
- W2362756151 hasConcept C5297727 @default.
- W2362756151 hasConcept C62520636 @default.
- W2362756151 hasConcept C79337645 @default.
- W2362756151 hasConcept C86803240 @default.
- W2362756151 hasConceptScore W2362756151C105795698 @default.
- W2362756151 hasConceptScore W2362756151C11413529 @default.
- W2362756151 hasConceptScore W2362756151C114614502 @default.
- W2362756151 hasConceptScore W2362756151C121332964 @default.
- W2362756151 hasConceptScore W2362756151C121864883 @default.
- W2362756151 hasConceptScore W2362756151C124101348 @default.
- W2362756151 hasConceptScore W2362756151C138695830 @default.
- W2362756151 hasConceptScore W2362756151C150060386 @default.
- W2362756151 hasConceptScore W2362756151C154945302 @default.
- W2362756151 hasConceptScore W2362756151C158622935 @default.
- W2362756151 hasConceptScore W2362756151C158709400 @default.
- W2362756151 hasConceptScore W2362756151C159620131 @default.
- W2362756151 hasConceptScore W2362756151C159877910 @default.
- W2362756151 hasConceptScore W2362756151C18903297 @default.
- W2362756151 hasConceptScore W2362756151C24890656 @default.
- W2362756151 hasConceptScore W2362756151C2781204021 @default.
- W2362756151 hasConceptScore W2362756151C33923547 @default.
- W2362756151 hasConceptScore W2362756151C41008148 @default.
- W2362756151 hasConceptScore W2362756151C42812 @default.
- W2362756151 hasConceptScore W2362756151C50644808 @default.
- W2362756151 hasConceptScore W2362756151C5297727 @default.
- W2362756151 hasConceptScore W2362756151C62520636 @default.
- W2362756151 hasConceptScore W2362756151C79337645 @default.
- W2362756151 hasConceptScore W2362756151C86803240 @default.
- W2362756151 hasLocation W23627561511 @default.
- W2362756151 hasOpenAccess W2362756151 @default.
- W2362756151 hasPrimaryLocation W23627561511 @default.
- W2362756151 hasRelatedWork W1589817162 @default.
- W2362756151 hasRelatedWork W1619488193 @default.
- W2362756151 hasRelatedWork W1738338515 @default.
- W2362756151 hasRelatedWork W1967270706 @default.
- W2362756151 hasRelatedWork W1969516015 @default.
- W2362756151 hasRelatedWork W1972421302 @default.
- W2362756151 hasRelatedWork W2052833405 @default.
- W2362756151 hasRelatedWork W2057907654 @default.
- W2362756151 hasRelatedWork W2065106363 @default.
- W2362756151 hasRelatedWork W2066759958 @default.
- W2362756151 hasRelatedWork W2076549286 @default.
- W2362756151 hasRelatedWork W2106074416 @default.
- W2362756151 hasRelatedWork W2110159464 @default.
- W2362756151 hasRelatedWork W2167250912 @default.
- W2362756151 hasRelatedWork W2352030180 @default.
- W2362756151 hasRelatedWork W2394136359 @default.
- W2362756151 hasRelatedWork W2470739781 @default.
- W2362756151 hasRelatedWork W3157327230 @default.
- W2362756151 hasRelatedWork W1577606602 @default.
- W2362756151 hasRelatedWork W3136854509 @default.
- W2362756151 isParatext "false" @default.
- W2362756151 isRetracted "false" @default.
- W2362756151 magId "2362756151" @default.
- W2362756151 workType "article" @default.