Matches in SemOpenAlex for { <https://semopenalex.org/work/W2364469673> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2364469673 abstract "The gas data coming from an array of chemical gas sensors is a kind of multivariate time-series. This data set is extremely difficult and complex to interpret for human experts. It needs designing hand-made features when applying traditional shallow machine learning algorithms in gas recognition. A new gas recognition method based on Deep Learning were proposed in this paper. It is one of unsupervised feature learning methods that can extract self-adapting features from the gas data, overcoming the complex process in designing features by hands and making the features more general. In this work, two methods based on UCI Machine learning database respectively were compared in the experiments. One of them is a two-hidden-layer structure of deep neural network-Stacked denoising Autoencoders and another is a kind of shallow machine learning algorithms. The results show that extracting features automaticly using Deep Learning is a simpler and more universal way in gas recognition. The method proposed in this paper not only improves the gas classification accuracy, but also reduces complexity of the process in shallow machine learning alogithms, so it is valuable to be applied in practice." @default.
- W2364469673 created "2016-06-24" @default.
- W2364469673 creator A5013378145 @default.
- W2364469673 creator A5028084257 @default.
- W2364469673 creator A5086519113 @default.
- W2364469673 date "2015-12-01" @default.
- W2364469673 modified "2023-09-25" @default.
- W2364469673 title "Research on Gas Recognition Based on Stacked Denoising Autoencoders" @default.
- W2364469673 cites W1606347560 @default.
- W2364469673 cites W2025768430 @default.
- W2364469673 cites W2036737027 @default.
- W2364469673 cites W2055102111 @default.
- W2364469673 cites W2122841949 @default.
- W2364469673 cites W2136922672 @default.
- W2364469673 cites W76056806 @default.
- W2364469673 doi "https://doi.org/10.1109/iscid.2015.226" @default.
- W2364469673 hasPublicationYear "2015" @default.
- W2364469673 type Work @default.
- W2364469673 sameAs 2364469673 @default.
- W2364469673 citedByCount "0" @default.
- W2364469673 crossrefType "proceedings-article" @default.
- W2364469673 hasAuthorship W2364469673A5013378145 @default.
- W2364469673 hasAuthorship W2364469673A5028084257 @default.
- W2364469673 hasAuthorship W2364469673A5086519113 @default.
- W2364469673 hasConcept C108583219 @default.
- W2364469673 hasConcept C111919701 @default.
- W2364469673 hasConcept C119857082 @default.
- W2364469673 hasConcept C138885662 @default.
- W2364469673 hasConcept C153180895 @default.
- W2364469673 hasConcept C154945302 @default.
- W2364469673 hasConcept C163294075 @default.
- W2364469673 hasConcept C177264268 @default.
- W2364469673 hasConcept C199360897 @default.
- W2364469673 hasConcept C2776401178 @default.
- W2364469673 hasConcept C41008148 @default.
- W2364469673 hasConcept C41895202 @default.
- W2364469673 hasConcept C50644808 @default.
- W2364469673 hasConcept C52622490 @default.
- W2364469673 hasConcept C8038995 @default.
- W2364469673 hasConcept C98045186 @default.
- W2364469673 hasConceptScore W2364469673C108583219 @default.
- W2364469673 hasConceptScore W2364469673C111919701 @default.
- W2364469673 hasConceptScore W2364469673C119857082 @default.
- W2364469673 hasConceptScore W2364469673C138885662 @default.
- W2364469673 hasConceptScore W2364469673C153180895 @default.
- W2364469673 hasConceptScore W2364469673C154945302 @default.
- W2364469673 hasConceptScore W2364469673C163294075 @default.
- W2364469673 hasConceptScore W2364469673C177264268 @default.
- W2364469673 hasConceptScore W2364469673C199360897 @default.
- W2364469673 hasConceptScore W2364469673C2776401178 @default.
- W2364469673 hasConceptScore W2364469673C41008148 @default.
- W2364469673 hasConceptScore W2364469673C41895202 @default.
- W2364469673 hasConceptScore W2364469673C50644808 @default.
- W2364469673 hasConceptScore W2364469673C52622490 @default.
- W2364469673 hasConceptScore W2364469673C8038995 @default.
- W2364469673 hasConceptScore W2364469673C98045186 @default.
- W2364469673 hasLocation W23644696731 @default.
- W2364469673 hasOpenAccess W2364469673 @default.
- W2364469673 hasPrimaryLocation W23644696731 @default.
- W2364469673 hasRelatedWork W1963812579 @default.
- W2364469673 hasRelatedWork W2511774531 @default.
- W2364469673 hasRelatedWork W2528057857 @default.
- W2364469673 hasRelatedWork W2530216401 @default.
- W2364469673 hasRelatedWork W2534752131 @default.
- W2364469673 hasRelatedWork W2586833865 @default.
- W2364469673 hasRelatedWork W2593097720 @default.
- W2364469673 hasRelatedWork W2593792475 @default.
- W2364469673 hasRelatedWork W2594878708 @default.
- W2364469673 hasRelatedWork W2793540079 @default.
- W2364469673 hasRelatedWork W2830104949 @default.
- W2364469673 hasRelatedWork W2886739642 @default.
- W2364469673 hasRelatedWork W2891690522 @default.
- W2364469673 hasRelatedWork W2914612552 @default.
- W2364469673 hasRelatedWork W2921182884 @default.
- W2364469673 hasRelatedWork W2953536431 @default.
- W2364469673 hasRelatedWork W2972838948 @default.
- W2364469673 hasRelatedWork W3005050494 @default.
- W2364469673 hasRelatedWork W3007398051 @default.
- W2364469673 hasRelatedWork W798790286 @default.
- W2364469673 isParatext "false" @default.
- W2364469673 isRetracted "false" @default.
- W2364469673 magId "2364469673" @default.
- W2364469673 workType "article" @default.