Matches in SemOpenAlex for { <https://semopenalex.org/work/W2364544230> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2364544230 abstract "Wetland is one of the typical ecosystems which can be found in the interaction area between water and land.It is not only our important living environment,but also one of the landscapes which have the richest biodiversity.Since it has many functions such as stabilizing the environment,protecting species gene and providing the resources for the humans,so it plays a very important role in maintaining the region and the global ecological equilibrium.Unfortunately,the wetland was opened up,its area reduces day by day,and the biodiversity encounters the serious disturbance and the destruction since 20th century,because of the contradictory between the population booming and the land resource reducing.The research area in this paper is the Three River Sources area in Qinghai Province.It lies on the west part of China,the center of Qinghai-Tibet Plain,and south of the Qinghai Province.As implied by its name,the Three River Sources area is the source catchments area of Yangtze River,Yellow River and the Lancang River.This area has rich wetland resources for it is covered density rivers,lakes and marshes.25% water of Yangtze River,49% water of Yellow River and 15% o water of Lancang River is coming from this area.In order to better understand the wetland distribution of the Three River Sources area,MOD13Q1 product data and decision tree method for wetland classification were used in this paper.As the dataset have much noises which are called salt and pepper noises,after many experiments,it is found that using the median filter and the principal component(PC) transform methods in the data pre-processing can efficiently revise these MODIS data.In the processing of the decision tree building,the digital elevation model(DEM) is good for separating the lakes and others.To control the curve shape and the threshold of the turning point of the curve in order could make useful of the curve of marshes' NDVI time series and finally finished the construction of the decision tree.Through the accuracy testing,the classification accuracy of lakes reached 96.5%,the overall classification accuracy reached 84.2%,and the kappa coefficient was 0.78.The results showed that the time series of MOD13Q1 data and decision tree method could meet requirements of lakes and marshes classification in a vast scale,but how to use them to classify the river needs more studies in future." @default.
- W2364544230 created "2016-06-24" @default.
- W2364544230 creator A5020659435 @default.
- W2364544230 date "2010-01-01" @default.
- W2364544230 modified "2023-09-25" @default.
- W2364544230 title "Classification of Remote Sensing Image for Lake and Marsh in the Area of Three River Sources Based on Decision Tree Using MODIS Data" @default.
- W2364544230 hasPublicationYear "2010" @default.
- W2364544230 type Work @default.
- W2364544230 sameAs 2364544230 @default.
- W2364544230 citedByCount "1" @default.
- W2364544230 countsByYear W23645442302012 @default.
- W2364544230 crossrefType "journal-article" @default.
- W2364544230 hasAuthorship W2364544230A5020659435 @default.
- W2364544230 hasConcept C110872660 @default.
- W2364544230 hasConcept C127313418 @default.
- W2364544230 hasConcept C127413603 @default.
- W2364544230 hasConcept C130217890 @default.
- W2364544230 hasConcept C135114317 @default.
- W2364544230 hasConcept C144024400 @default.
- W2364544230 hasConcept C146978453 @default.
- W2364544230 hasConcept C149923435 @default.
- W2364544230 hasConcept C153823671 @default.
- W2364544230 hasConcept C155681218 @default.
- W2364544230 hasConcept C187320778 @default.
- W2364544230 hasConcept C18903297 @default.
- W2364544230 hasConcept C205649164 @default.
- W2364544230 hasConcept C206345919 @default.
- W2364544230 hasConcept C2908647359 @default.
- W2364544230 hasConcept C31258907 @default.
- W2364544230 hasConcept C39432304 @default.
- W2364544230 hasConcept C41008148 @default.
- W2364544230 hasConcept C5072461 @default.
- W2364544230 hasConcept C524765639 @default.
- W2364544230 hasConcept C58640448 @default.
- W2364544230 hasConcept C67268981 @default.
- W2364544230 hasConcept C67715294 @default.
- W2364544230 hasConcept C76886044 @default.
- W2364544230 hasConcept C86803240 @default.
- W2364544230 hasConceptScore W2364544230C110872660 @default.
- W2364544230 hasConceptScore W2364544230C127313418 @default.
- W2364544230 hasConceptScore W2364544230C127413603 @default.
- W2364544230 hasConceptScore W2364544230C130217890 @default.
- W2364544230 hasConceptScore W2364544230C135114317 @default.
- W2364544230 hasConceptScore W2364544230C144024400 @default.
- W2364544230 hasConceptScore W2364544230C146978453 @default.
- W2364544230 hasConceptScore W2364544230C149923435 @default.
- W2364544230 hasConceptScore W2364544230C153823671 @default.
- W2364544230 hasConceptScore W2364544230C155681218 @default.
- W2364544230 hasConceptScore W2364544230C187320778 @default.
- W2364544230 hasConceptScore W2364544230C18903297 @default.
- W2364544230 hasConceptScore W2364544230C205649164 @default.
- W2364544230 hasConceptScore W2364544230C206345919 @default.
- W2364544230 hasConceptScore W2364544230C2908647359 @default.
- W2364544230 hasConceptScore W2364544230C31258907 @default.
- W2364544230 hasConceptScore W2364544230C39432304 @default.
- W2364544230 hasConceptScore W2364544230C41008148 @default.
- W2364544230 hasConceptScore W2364544230C5072461 @default.
- W2364544230 hasConceptScore W2364544230C524765639 @default.
- W2364544230 hasConceptScore W2364544230C58640448 @default.
- W2364544230 hasConceptScore W2364544230C67268981 @default.
- W2364544230 hasConceptScore W2364544230C67715294 @default.
- W2364544230 hasConceptScore W2364544230C76886044 @default.
- W2364544230 hasConceptScore W2364544230C86803240 @default.
- W2364544230 hasLocation W23645442301 @default.
- W2364544230 hasOpenAccess W2364544230 @default.
- W2364544230 hasPrimaryLocation W23645442301 @default.
- W2364544230 hasRelatedWork W2015658905 @default.
- W2364544230 hasRelatedWork W2049379562 @default.
- W2364544230 hasRelatedWork W2064383339 @default.
- W2364544230 hasRelatedWork W2172175585 @default.
- W2364544230 hasRelatedWork W2285188035 @default.
- W2364544230 hasRelatedWork W2350413609 @default.
- W2364544230 hasRelatedWork W2354213042 @default.
- W2364544230 hasRelatedWork W2355969080 @default.
- W2364544230 hasRelatedWork W2363699240 @default.
- W2364544230 hasRelatedWork W2364994373 @default.
- W2364544230 hasRelatedWork W2369145612 @default.
- W2364544230 hasRelatedWork W2373671399 @default.
- W2364544230 hasRelatedWork W2374917300 @default.
- W2364544230 hasRelatedWork W2377097848 @default.
- W2364544230 hasRelatedWork W2383455107 @default.
- W2364544230 hasRelatedWork W2385780303 @default.
- W2364544230 hasRelatedWork W2528769279 @default.
- W2364544230 hasRelatedWork W2806135500 @default.
- W2364544230 hasRelatedWork W3011013353 @default.
- W2364544230 hasRelatedWork W3149405682 @default.
- W2364544230 isParatext "false" @default.
- W2364544230 isRetracted "false" @default.
- W2364544230 magId "2364544230" @default.
- W2364544230 workType "article" @default.