Matches in SemOpenAlex for { <https://semopenalex.org/work/W2364992128> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2364992128 endingPage "128" @default.
- W2364992128 startingPage "108" @default.
- W2364992128 abstract "In this paper, we revisit two spectral approximations, including truncated approximation and interpolation for Caputo fractional derivative. The two approaches have been studied to approximate Riemann–Liouville (R–L) fractional derivative by Chen et al. and Zayernouri et al. respectively in their most recent work. For truncated approximation the reconsideration partly arises from the difference between fractional derivative in R–L sense and Caputo sense: Caputo fractional derivative requires higher regularity of the unknown than R–L version. Another reason for the reconsideration is that we distinguish the differential order of the unknown with the index of Jacobi polynomials, which is not presented in the previous work. Also we provide a way to choose the index when facing multi-order problems. By using generalized Hardy's inequality, the gap between the weighted Sobolev space involving Caputo fractional derivative and the classical weighted space is bridged, then the optimal projection error is derived in the non-uniformly Jacobi-weighted Sobolev space and the maximum absolute error is presented as well. For the interpolation, analysis of interpolation error was not given in their work. In this paper we build the interpolation error in non-uniformly Jacobi-weighted Sobolev space by constructing fractional inverse inequality. With combining collocation method, the approximation technique is applied to solve fractional initial-value problems (FIVPs). Numerical examples are also provided to illustrate the effectiveness of this algorithm." @default.
- W2364992128 created "2016-06-24" @default.
- W2364992128 creator A5004762660 @default.
- W2364992128 creator A5005175256 @default.
- W2364992128 creator A5016049812 @default.
- W2364992128 date "2016-08-01" @default.
- W2364992128 modified "2023-10-02" @default.
- W2364992128 title "Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial-value problems" @default.
- W2364992128 cites W1963563982 @default.
- W2364992128 cites W1978958071 @default.
- W2364992128 cites W1981384091 @default.
- W2364992128 cites W1991212918 @default.
- W2364992128 cites W1991982189 @default.
- W2364992128 cites W1993680495 @default.
- W2364992128 cites W1997432471 @default.
- W2364992128 cites W2004373523 @default.
- W2364992128 cites W2007553558 @default.
- W2364992128 cites W2014666630 @default.
- W2364992128 cites W2030146312 @default.
- W2364992128 cites W2048805000 @default.
- W2364992128 cites W2052623210 @default.
- W2364992128 cites W2055148154 @default.
- W2364992128 cites W2056025895 @default.
- W2364992128 cites W2065254635 @default.
- W2364992128 cites W2078344011 @default.
- W2364992128 cites W2081272416 @default.
- W2364992128 cites W2102619667 @default.
- W2364992128 cites W2118288723 @default.
- W2364992128 cites W2138437624 @default.
- W2364992128 cites W2319089385 @default.
- W2364992128 doi "https://doi.org/10.1016/j.jcp.2016.05.017" @default.
- W2364992128 hasPublicationYear "2016" @default.
- W2364992128 type Work @default.
- W2364992128 sameAs 2364992128 @default.
- W2364992128 citedByCount "18" @default.
- W2364992128 countsByYear W23649921282017 @default.
- W2364992128 countsByYear W23649921282018 @default.
- W2364992128 countsByYear W23649921282019 @default.
- W2364992128 countsByYear W23649921282020 @default.
- W2364992128 countsByYear W23649921282022 @default.
- W2364992128 countsByYear W23649921282023 @default.
- W2364992128 crossrefType "journal-article" @default.
- W2364992128 hasAuthorship W2364992128A5004762660 @default.
- W2364992128 hasAuthorship W2364992128A5005175256 @default.
- W2364992128 hasAuthorship W2364992128A5016049812 @default.
- W2364992128 hasConcept C104114177 @default.
- W2364992128 hasConcept C122383733 @default.
- W2364992128 hasConcept C134306372 @default.
- W2364992128 hasConcept C137800194 @default.
- W2364992128 hasConcept C138885662 @default.
- W2364992128 hasConcept C154249771 @default.
- W2364992128 hasConcept C154945302 @default.
- W2364992128 hasConcept C2778572836 @default.
- W2364992128 hasConcept C28826006 @default.
- W2364992128 hasConcept C33923547 @default.
- W2364992128 hasConcept C41008148 @default.
- W2364992128 hasConcept C41895202 @default.
- W2364992128 hasConcept C99730327 @default.
- W2364992128 hasConceptScore W2364992128C104114177 @default.
- W2364992128 hasConceptScore W2364992128C122383733 @default.
- W2364992128 hasConceptScore W2364992128C134306372 @default.
- W2364992128 hasConceptScore W2364992128C137800194 @default.
- W2364992128 hasConceptScore W2364992128C138885662 @default.
- W2364992128 hasConceptScore W2364992128C154249771 @default.
- W2364992128 hasConceptScore W2364992128C154945302 @default.
- W2364992128 hasConceptScore W2364992128C2778572836 @default.
- W2364992128 hasConceptScore W2364992128C28826006 @default.
- W2364992128 hasConceptScore W2364992128C33923547 @default.
- W2364992128 hasConceptScore W2364992128C41008148 @default.
- W2364992128 hasConceptScore W2364992128C41895202 @default.
- W2364992128 hasConceptScore W2364992128C99730327 @default.
- W2364992128 hasFunder F4320321001 @default.
- W2364992128 hasFunder F4320321514 @default.
- W2364992128 hasLocation W23649921281 @default.
- W2364992128 hasOpenAccess W2364992128 @default.
- W2364992128 hasPrimaryLocation W23649921281 @default.
- W2364992128 hasRelatedWork W1535410608 @default.
- W2364992128 hasRelatedWork W1543558945 @default.
- W2364992128 hasRelatedWork W1973865997 @default.
- W2364992128 hasRelatedWork W2032854749 @default.
- W2364992128 hasRelatedWork W2317176613 @default.
- W2364992128 hasRelatedWork W2332123659 @default.
- W2364992128 hasRelatedWork W2364992128 @default.
- W2364992128 hasRelatedWork W2750561019 @default.
- W2364992128 hasRelatedWork W4253570894 @default.
- W2364992128 hasRelatedWork W2604017320 @default.
- W2364992128 hasVolume "319" @default.
- W2364992128 isParatext "false" @default.
- W2364992128 isRetracted "false" @default.
- W2364992128 magId "2364992128" @default.
- W2364992128 workType "article" @default.