Matches in SemOpenAlex for { <https://semopenalex.org/work/W2366348631> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2366348631 endingPage "1675" @default.
- W2366348631 startingPage "1671" @default.
- W2366348631 abstract "Purpose To study the degree of surface congruency between the talar dome and humeral head, to determine the size of graft harvestable from the talar dome, and to determine if there are surrogate markers that correspond to a higher degree of surface congruency. Methods Computer models of 7 nonmatched humeral heads and 7 talar domes were generated by digital segmentation of magnetic resonance (MR) images. Modeled defect regions of each humeral head were then aligned with medial and lateral surfaces of each talar dome using software to maximally limit surface mismatch. Modeled defect sizes ranging from 24 × 10 mm to 30 × 10 mm were tested. Congruence match of <1 mm separation was then measured. Results The average surface match between randomly selected talar domes to humeral head surfaces was 87.2% when 1 mm was selected as the maximal acceptable congruence difference. Congruence match was not affected by graft size or laterality of talar dome as source of graft. Matching radius of curvature of talar dome to humeral head and height of donor to recipient correlated with improved congruence match. Under best match conditions, a maximal congruence match of 95.2% was achieved. Conclusions The present study indicates that the talar dome can be a potential source of osteochondral allograft for Hill-Sachs lesions with a maximal defect size of 30 × 10 mm for a single graft. Larger graft sizes resulted in decreased success of actual graft harvest as a result of dimensional constraints of the talar dome. Additional studies are required to determine the biomechanical compatibility of this graft. Clinical Relevance The talar dome has a high degree of surface congruency in comparison with the humeral head though the maximal graft size harvestable limits its clinical applicability. To study the degree of surface congruency between the talar dome and humeral head, to determine the size of graft harvestable from the talar dome, and to determine if there are surrogate markers that correspond to a higher degree of surface congruency. Computer models of 7 nonmatched humeral heads and 7 talar domes were generated by digital segmentation of magnetic resonance (MR) images. Modeled defect regions of each humeral head were then aligned with medial and lateral surfaces of each talar dome using software to maximally limit surface mismatch. Modeled defect sizes ranging from 24 × 10 mm to 30 × 10 mm were tested. Congruence match of <1 mm separation was then measured. The average surface match between randomly selected talar domes to humeral head surfaces was 87.2% when 1 mm was selected as the maximal acceptable congruence difference. Congruence match was not affected by graft size or laterality of talar dome as source of graft. Matching radius of curvature of talar dome to humeral head and height of donor to recipient correlated with improved congruence match. Under best match conditions, a maximal congruence match of 95.2% was achieved. The present study indicates that the talar dome can be a potential source of osteochondral allograft for Hill-Sachs lesions with a maximal defect size of 30 × 10 mm for a single graft. Larger graft sizes resulted in decreased success of actual graft harvest as a result of dimensional constraints of the talar dome. Additional studies are required to determine the biomechanical compatibility of this graft." @default.
- W2366348631 created "2016-06-24" @default.
- W2366348631 creator A5001991268 @default.
- W2366348631 creator A5004581885 @default.
- W2366348631 creator A5078027362 @default.
- W2366348631 creator A5088933897 @default.
- W2366348631 creator A5091539154 @default.
- W2366348631 date "2016-08-01" @default.
- W2366348631 modified "2023-10-18" @default.
- W2366348631 title "Computer Modeling Analysis of the Talar Dome as a Graft for the Humeral Head" @default.
- W2366348631 cites W1853862933 @default.
- W2366348631 cites W191904861 @default.
- W2366348631 cites W1983768960 @default.
- W2366348631 cites W1993193643 @default.
- W2366348631 cites W2006114905 @default.
- W2366348631 cites W2027978185 @default.
- W2366348631 cites W2042779327 @default.
- W2366348631 cites W2070138495 @default.
- W2366348631 cites W2088187638 @default.
- W2366348631 cites W2104184218 @default.
- W2366348631 cites W2126398950 @default.
- W2366348631 cites W2150817463 @default.
- W2366348631 cites W2154553161 @default.
- W2366348631 cites W2156372362 @default.
- W2366348631 cites W2158580991 @default.
- W2366348631 cites W2167632471 @default.
- W2366348631 cites W2204276171 @default.
- W2366348631 cites W2252439837 @default.
- W2366348631 cites W2277599050 @default.
- W2366348631 doi "https://doi.org/10.1016/j.arthro.2016.03.021" @default.
- W2366348631 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27177437" @default.
- W2366348631 hasPublicationYear "2016" @default.
- W2366348631 type Work @default.
- W2366348631 sameAs 2366348631 @default.
- W2366348631 citedByCount "6" @default.
- W2366348631 countsByYear W23663486312017 @default.
- W2366348631 countsByYear W23663486312021 @default.
- W2366348631 countsByYear W23663486312022 @default.
- W2366348631 countsByYear W23663486312023 @default.
- W2366348631 crossrefType "journal-article" @default.
- W2366348631 hasAuthorship W2366348631A5001991268 @default.
- W2366348631 hasAuthorship W2366348631A5004581885 @default.
- W2366348631 hasAuthorship W2366348631A5078027362 @default.
- W2366348631 hasAuthorship W2366348631A5088933897 @default.
- W2366348631 hasAuthorship W2366348631A5091539154 @default.
- W2366348631 hasBestOaLocation W23663486311 @default.
- W2366348631 hasConcept C105702510 @default.
- W2366348631 hasConcept C114793014 @default.
- W2366348631 hasConcept C127313418 @default.
- W2366348631 hasConcept C132074034 @default.
- W2366348631 hasConcept C189092281 @default.
- W2366348631 hasConcept C2524010 @default.
- W2366348631 hasConcept C2780312720 @default.
- W2366348631 hasConcept C29694066 @default.
- W2366348631 hasConcept C2989005 @default.
- W2366348631 hasConcept C33923547 @default.
- W2366348631 hasConcept C71924100 @default.
- W2366348631 hasConcept C91762617 @default.
- W2366348631 hasConceptScore W2366348631C105702510 @default.
- W2366348631 hasConceptScore W2366348631C114793014 @default.
- W2366348631 hasConceptScore W2366348631C127313418 @default.
- W2366348631 hasConceptScore W2366348631C132074034 @default.
- W2366348631 hasConceptScore W2366348631C189092281 @default.
- W2366348631 hasConceptScore W2366348631C2524010 @default.
- W2366348631 hasConceptScore W2366348631C2780312720 @default.
- W2366348631 hasConceptScore W2366348631C29694066 @default.
- W2366348631 hasConceptScore W2366348631C2989005 @default.
- W2366348631 hasConceptScore W2366348631C33923547 @default.
- W2366348631 hasConceptScore W2366348631C71924100 @default.
- W2366348631 hasConceptScore W2366348631C91762617 @default.
- W2366348631 hasIssue "8" @default.
- W2366348631 hasLocation W23663486311 @default.
- W2366348631 hasLocation W23663486312 @default.
- W2366348631 hasOpenAccess W2366348631 @default.
- W2366348631 hasPrimaryLocation W23663486311 @default.
- W2366348631 hasRelatedWork W1975492217 @default.
- W2366348631 hasRelatedWork W2018353741 @default.
- W2366348631 hasRelatedWork W2018923972 @default.
- W2366348631 hasRelatedWork W2026225221 @default.
- W2366348631 hasRelatedWork W2093943689 @default.
- W2366348631 hasRelatedWork W2159666545 @default.
- W2366348631 hasRelatedWork W2325838646 @default.
- W2366348631 hasRelatedWork W2403745653 @default.
- W2366348631 hasRelatedWork W2920451053 @default.
- W2366348631 hasRelatedWork W2415981721 @default.
- W2366348631 hasVolume "32" @default.
- W2366348631 isParatext "false" @default.
- W2366348631 isRetracted "false" @default.
- W2366348631 magId "2366348631" @default.
- W2366348631 workType "article" @default.