Matches in SemOpenAlex for { <https://semopenalex.org/work/W2367400316> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2367400316 abstract "Data clustering is an unsupervised learning task that has found many applications in various scientific fields. The goal is to find subgroups of closely related data samples (clusters) in a set of unlabeled data. A classic clustering algorithm is the so-called k-Means. It is very popular, however, it is also unable to handle cases in which the clusters are not linearly separable. Kernel k-Means is a state of the art clustering algorithm, which employs the kernel trick, in order to perform clustering on a higher dimensionality space, thus overcoming the limitations of classic k-Means regarding the non linear separability of the input data. It has recently received a distributed implementation, named Trimmed Kernel k-Means, following the MapReduce distributed computing model. In addition to performing the computations in a distributed manner, Trimmed Kernel k-Means also trims the kernel matrix, in order to reduce the memory requirements and improve performance. The trimming of each row of the kernel matrix is achieved by attempting to estimate the cardinality of the cluster that the corresponding sample belongs to, and removing the kernel matrix entries connecting the sample to samples that probably belong to another cluster. The Spark cluster computing framework was used for the distributed implementation. In this paper, we present a distributed clustering scheme that is based on Trimmed Kernel k-Means, which employs subsampling, in order to be able to efficiently perform clustering on an extremely large dataset. The results indicate that the proposed method run much faster than the original Trimmed Kernel k-Means, while still providing clustering performance competitive with other state of the art kernel approaches." @default.
- W2367400316 created "2016-06-24" @default.
- W2367400316 creator A5034879808 @default.
- W2367400316 creator A5061130224 @default.
- W2367400316 creator A5084148416 @default.
- W2367400316 creator A5091370311 @default.
- W2367400316 date "2016-05-18" @default.
- W2367400316 modified "2023-09-24" @default.
- W2367400316 title "Efficient MapReduce Kernel k-Means for Big Data Clustering" @default.
- W2367400316 cites W1607985379 @default.
- W2367400316 cites W1978383016 @default.
- W2367400316 cites W1979655058 @default.
- W2367400316 cites W1992419399 @default.
- W2367400316 cites W2019464758 @default.
- W2367400316 cites W2025707345 @default.
- W2367400316 cites W2026705124 @default.
- W2367400316 cites W2028565608 @default.
- W2367400316 cites W2034616054 @default.
- W2367400316 cites W2035979693 @default.
- W2367400316 cites W2036260704 @default.
- W2367400316 cites W2039051707 @default.
- W2367400316 cites W2047244756 @default.
- W2367400316 cites W2051586153 @default.
- W2367400316 cites W2057309387 @default.
- W2367400316 cites W2093771778 @default.
- W2367400316 cites W2135957668 @default.
- W2367400316 cites W2140095548 @default.
- W2367400316 cites W2155074104 @default.
- W2367400316 cites W2165521059 @default.
- W2367400316 cites W2173213060 @default.
- W2367400316 doi "https://doi.org/10.1145/2903220.2903255" @default.
- W2367400316 hasPublicationYear "2016" @default.
- W2367400316 type Work @default.
- W2367400316 sameAs 2367400316 @default.
- W2367400316 citedByCount "7" @default.
- W2367400316 countsByYear W23674003162016 @default.
- W2367400316 countsByYear W23674003162017 @default.
- W2367400316 countsByYear W23674003162018 @default.
- W2367400316 countsByYear W23674003162020 @default.
- W2367400316 countsByYear W23674003162023 @default.
- W2367400316 crossrefType "proceedings-article" @default.
- W2367400316 hasAuthorship W2367400316A5034879808 @default.
- W2367400316 hasAuthorship W2367400316A5061130224 @default.
- W2367400316 hasAuthorship W2367400316A5084148416 @default.
- W2367400316 hasAuthorship W2367400316A5091370311 @default.
- W2367400316 hasConcept C114614502 @default.
- W2367400316 hasConcept C124101348 @default.
- W2367400316 hasConcept C154945302 @default.
- W2367400316 hasConcept C33923547 @default.
- W2367400316 hasConcept C41008148 @default.
- W2367400316 hasConcept C73555534 @default.
- W2367400316 hasConcept C74193536 @default.
- W2367400316 hasConcept C75684735 @default.
- W2367400316 hasConceptScore W2367400316C114614502 @default.
- W2367400316 hasConceptScore W2367400316C124101348 @default.
- W2367400316 hasConceptScore W2367400316C154945302 @default.
- W2367400316 hasConceptScore W2367400316C33923547 @default.
- W2367400316 hasConceptScore W2367400316C41008148 @default.
- W2367400316 hasConceptScore W2367400316C73555534 @default.
- W2367400316 hasConceptScore W2367400316C74193536 @default.
- W2367400316 hasConceptScore W2367400316C75684735 @default.
- W2367400316 hasLocation W23674003161 @default.
- W2367400316 hasOpenAccess W2367400316 @default.
- W2367400316 hasPrimaryLocation W23674003161 @default.
- W2367400316 hasRelatedWork W1997217298 @default.
- W2367400316 hasRelatedWork W2286998681 @default.
- W2367400316 hasRelatedWork W2780362365 @default.
- W2367400316 hasRelatedWork W2953411182 @default.
- W2367400316 hasRelatedWork W3012677882 @default.
- W2367400316 hasRelatedWork W3126395262 @default.
- W2367400316 hasRelatedWork W4226091590 @default.
- W2367400316 hasRelatedWork W4226459110 @default.
- W2367400316 hasRelatedWork W4248689491 @default.
- W2367400316 hasRelatedWork W2532266515 @default.
- W2367400316 isParatext "false" @default.
- W2367400316 isRetracted "false" @default.
- W2367400316 magId "2367400316" @default.
- W2367400316 workType "article" @default.