Matches in SemOpenAlex for { <https://semopenalex.org/work/W2367939674> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2367939674 abstract "For the given threshold, a new method of constructing the Bayesian network is proposed by computing the mutual information between two variables. The traditional Markov Chain Monte Carlo method for structural learning in graphical models MCMC algorithm is improved. Based on the improved algorithm, Markov Chain of the Bayesian network is got. The result of the experiment show that the Bayesian network learned by the improved method is similar to that learned by the old algorithm, and their accepted ratio is also very similar." @default.
- W2367939674 created "2016-06-24" @default.
- W2367939674 creator A5018204988 @default.
- W2367939674 date "2004-01-01" @default.
- W2367939674 modified "2023-09-28" @default.
- W2367939674 title "Learning of Bayesian network based on MCMC algorithm" @default.
- W2367939674 hasPublicationYear "2004" @default.
- W2367939674 type Work @default.
- W2367939674 sameAs 2367939674 @default.
- W2367939674 citedByCount "0" @default.
- W2367939674 crossrefType "journal-article" @default.
- W2367939674 hasAuthorship W2367939674A5018204988 @default.
- W2367939674 hasConcept C107673813 @default.
- W2367939674 hasConcept C111350023 @default.
- W2367939674 hasConcept C11413529 @default.
- W2367939674 hasConcept C119857082 @default.
- W2367939674 hasConcept C154945302 @default.
- W2367939674 hasConcept C155846161 @default.
- W2367939674 hasConcept C160234255 @default.
- W2367939674 hasConcept C33724603 @default.
- W2367939674 hasConcept C41008148 @default.
- W2367939674 hasConcept C71983512 @default.
- W2367939674 hasConcept C98763669 @default.
- W2367939674 hasConceptScore W2367939674C107673813 @default.
- W2367939674 hasConceptScore W2367939674C111350023 @default.
- W2367939674 hasConceptScore W2367939674C11413529 @default.
- W2367939674 hasConceptScore W2367939674C119857082 @default.
- W2367939674 hasConceptScore W2367939674C154945302 @default.
- W2367939674 hasConceptScore W2367939674C155846161 @default.
- W2367939674 hasConceptScore W2367939674C160234255 @default.
- W2367939674 hasConceptScore W2367939674C33724603 @default.
- W2367939674 hasConceptScore W2367939674C41008148 @default.
- W2367939674 hasConceptScore W2367939674C71983512 @default.
- W2367939674 hasConceptScore W2367939674C98763669 @default.
- W2367939674 hasLocation W23679396741 @default.
- W2367939674 hasOpenAccess W2367939674 @default.
- W2367939674 hasPrimaryLocation W23679396741 @default.
- W2367939674 hasRelatedWork W1176220669 @default.
- W2367939674 hasRelatedWork W1812797591 @default.
- W2367939674 hasRelatedWork W2015638782 @default.
- W2367939674 hasRelatedWork W2129827384 @default.
- W2367939674 hasRelatedWork W2132256376 @default.
- W2367939674 hasRelatedWork W2138916023 @default.
- W2367939674 hasRelatedWork W2351612410 @default.
- W2367939674 hasRelatedWork W2355139283 @default.
- W2367939674 hasRelatedWork W2358163403 @default.
- W2367939674 hasRelatedWork W2362075097 @default.
- W2367939674 hasRelatedWork W2365776037 @default.
- W2367939674 hasRelatedWork W2376691010 @default.
- W2367939674 hasRelatedWork W2383308127 @default.
- W2367939674 hasRelatedWork W2384656940 @default.
- W2367939674 hasRelatedWork W2516109431 @default.
- W2367939674 hasRelatedWork W2547255543 @default.
- W2367939674 hasRelatedWork W2892275554 @default.
- W2367939674 hasRelatedWork W2953361944 @default.
- W2367939674 hasRelatedWork W3157340769 @default.
- W2367939674 hasRelatedWork W793342979 @default.
- W2367939674 isParatext "false" @default.
- W2367939674 isRetracted "false" @default.
- W2367939674 magId "2367939674" @default.
- W2367939674 workType "article" @default.