Matches in SemOpenAlex for { <https://semopenalex.org/work/W2368014749> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2368014749 abstract "Compared to the traditional test, the value of test for diagnostic assessment test lies in its ability to reveal each student’s specific cognitive strengths and weaknesses and further helps design effective remedy for individual student. More information for cognitive diagnose could be provided by polytomous scoring than dichotomous scoring. So far, the Polytomous Extension of diagnostic assessment still remains at the stage that all the attributes share the same scoring-weight. It is contrary to the fact that attributes are very likely to have different weights. On the assumption that two students respectively grasp the same number of attributes in an item, but not the same attributes, rater should give more scores to the student who answers the more difficult or key attributes correctly, rather than give the same score. It’s imperative for us to study the Cognitive Diagnostic Models(CDM) based on the attributes with different scoring-weight. In this paper, a method derived from Bayesian Networks and Least Squares Distance theories is proposed to calculate the score weight of attributes. Additionally, this paper discovers and solves a problem that the weight of the same attributes in different items may not be the same. The cognitive diagnostic model in this paper is Weighted Attribute Hierarchy Method (WAHM) with score weights of attributes, which is based on Graded Response Model (GRM), briefly, it is called WAHM-GRM. Four kinds of attribute hierarchies were separately used as the basis for the simulation. A sample of 5000 expected item response vectors was generated based on each of the four expected response patterns which are normally distributed. Each of the four samples consists of expected response patterns which are free from slips, the observed item response patterns were generated by randomly adding slips to each of the expected response patterns. In this study, the percentage of random errors was manipulated to 5%, 10%,15% and 20% of the total number of item responses to examine whether the number of random errors has an impact on the accuracy of classification methods. Simulation results showed that under the condition that attributes with different weights, very high classification accuracy rates remain for all classification methods, including methods A and B, proposed by Leighton et al.(2004) and ration of logarithm likelihood method (LL),proposed by Zhu et al.(2009). Especially for A and B methods, classification accuracy rate of AHM-GRM remains above 90% even when slip is as high as 20%. In Conclusion, AHM-GRM with different weighted attributes has a very high classification accuracy rate. In addition, score weights of attribute can guide item builders to distribute scores to the item attributes at the stage of developing item tests." @default.
- W2368014749 created "2016-06-24" @default.
- W2368014749 creator A5060488177 @default.
- W2368014749 date "2010-01-01" @default.
- W2368014749 modified "2023-09-25" @default.
- W2368014749 title "Attribute Hierarchy Method Based on Graded Response Model with Different Scoring-Weight for Attributes" @default.
- W2368014749 hasPublicationYear "2010" @default.
- W2368014749 type Work @default.
- W2368014749 sameAs 2368014749 @default.
- W2368014749 citedByCount "0" @default.
- W2368014749 crossrefType "journal-article" @default.
- W2368014749 hasAuthorship W2368014749A5060488177 @default.
- W2368014749 hasConcept C105795698 @default.
- W2368014749 hasConcept C107673813 @default.
- W2368014749 hasConcept C119857082 @default.
- W2368014749 hasConcept C124101348 @default.
- W2368014749 hasConcept C151730666 @default.
- W2368014749 hasConcept C154945302 @default.
- W2368014749 hasConcept C15744967 @default.
- W2368014749 hasConcept C162324750 @default.
- W2368014749 hasConcept C169760540 @default.
- W2368014749 hasConcept C169900460 @default.
- W2368014749 hasConcept C171268870 @default.
- W2368014749 hasConcept C171606756 @default.
- W2368014749 hasConcept C19875794 @default.
- W2368014749 hasConcept C199360897 @default.
- W2368014749 hasConcept C207968926 @default.
- W2368014749 hasConcept C2777267654 @default.
- W2368014749 hasConcept C31170391 @default.
- W2368014749 hasConcept C33923547 @default.
- W2368014749 hasConcept C34447519 @default.
- W2368014749 hasConcept C41008148 @default.
- W2368014749 hasConcept C63882131 @default.
- W2368014749 hasConcept C77805123 @default.
- W2368014749 hasConcept C86803240 @default.
- W2368014749 hasConceptScore W2368014749C105795698 @default.
- W2368014749 hasConceptScore W2368014749C107673813 @default.
- W2368014749 hasConceptScore W2368014749C119857082 @default.
- W2368014749 hasConceptScore W2368014749C124101348 @default.
- W2368014749 hasConceptScore W2368014749C151730666 @default.
- W2368014749 hasConceptScore W2368014749C154945302 @default.
- W2368014749 hasConceptScore W2368014749C15744967 @default.
- W2368014749 hasConceptScore W2368014749C162324750 @default.
- W2368014749 hasConceptScore W2368014749C169760540 @default.
- W2368014749 hasConceptScore W2368014749C169900460 @default.
- W2368014749 hasConceptScore W2368014749C171268870 @default.
- W2368014749 hasConceptScore W2368014749C171606756 @default.
- W2368014749 hasConceptScore W2368014749C19875794 @default.
- W2368014749 hasConceptScore W2368014749C199360897 @default.
- W2368014749 hasConceptScore W2368014749C207968926 @default.
- W2368014749 hasConceptScore W2368014749C2777267654 @default.
- W2368014749 hasConceptScore W2368014749C31170391 @default.
- W2368014749 hasConceptScore W2368014749C33923547 @default.
- W2368014749 hasConceptScore W2368014749C34447519 @default.
- W2368014749 hasConceptScore W2368014749C41008148 @default.
- W2368014749 hasConceptScore W2368014749C63882131 @default.
- W2368014749 hasConceptScore W2368014749C77805123 @default.
- W2368014749 hasConceptScore W2368014749C86803240 @default.
- W2368014749 hasLocation W23680147491 @default.
- W2368014749 hasOpenAccess W2368014749 @default.
- W2368014749 hasPrimaryLocation W23680147491 @default.
- W2368014749 hasRelatedWork W1577208871 @default.
- W2368014749 hasRelatedWork W1823115838 @default.
- W2368014749 hasRelatedWork W1997164180 @default.
- W2368014749 hasRelatedWork W2006505000 @default.
- W2368014749 hasRelatedWork W2048113320 @default.
- W2368014749 hasRelatedWork W2157685233 @default.
- W2368014749 hasRelatedWork W2162514439 @default.
- W2368014749 hasRelatedWork W2316649377 @default.
- W2368014749 hasRelatedWork W2335558412 @default.
- W2368014749 hasRelatedWork W2339396227 @default.
- W2368014749 hasRelatedWork W2945730871 @default.
- W2368014749 hasRelatedWork W304025645 @default.
- W2368014749 hasRelatedWork W3143498610 @default.
- W2368014749 hasRelatedWork W3144854221 @default.
- W2368014749 hasRelatedWork W3208791890 @default.
- W2368014749 hasRelatedWork W592856115 @default.
- W2368014749 hasRelatedWork W608639874 @default.
- W2368014749 hasRelatedWork W2020408981 @default.
- W2368014749 hasRelatedWork W3203404133 @default.
- W2368014749 hasRelatedWork W338373376 @default.
- W2368014749 isParatext "false" @default.
- W2368014749 isRetracted "false" @default.
- W2368014749 magId "2368014749" @default.
- W2368014749 workType "article" @default.