Matches in SemOpenAlex for { <https://semopenalex.org/work/W2368874969> ?p ?o ?g. }
- W2368874969 abstract "Interpatient variability in responses to drugs leads to millions of hospitalizations every year. To help prevent these failures, the discipline of pharmacogenomics intends to characterize the genomic profiles that may lead to undesirable drug responses. Pharmacogenomic scientists must integrate research findings across the genomic, molecular, cellular, tissue, organ, and organismic levels. To address this challenge, I have developed methods to extract information relevant to pharmacogenomics from the literature. These methods can serve as the foundation for powerful tools that help scientists synthesize information and generate new biological hypotheses. Specifically, this thesis covers novel applications and extensions of supervised machine learning algorithms to extract relationships between genes and drugs automatically. This task comprises several problems that must be solved separately. Thus, I have also developed algorithms to identify and score gene names and their abbreviations from text. I have framed these tasks as classification problems, where the computer must integrate diverse evidence to produce a decision. I identified features that captured information relevant to the problem and then encoded them into representations suitable for classification. To extract a comprehensive list of gene-drug relationships, an algorithm must find gene and protein names from text. Using such an algorithm, the computer could identify newly coined gene names. My approach to this problem achieved 83% recall at 82% precision. Since many of these names were abbreviations, e.g. TPMT for Thiopurine Methyltransferase, I developed an abbreviation identification algorithm that found these concurrences with 84% recall at 81% precision. The final algorithm classified relationships between genes and drugs into five categories with 74% accuracy. Finally, I have made these algorithms and other results available on the internet at http://bionlp.stanford.edu/. The code is available both as human-accessible web pages and computer-accessible web services." @default.
- W2368874969 created "2016-06-24" @default.
- W2368874969 creator A5004242684 @default.
- W2368874969 creator A5084043782 @default.
- W2368874969 date "2003-01-01" @default.
- W2368874969 modified "2023-09-26" @default.
- W2368874969 title "Using machine learning to extract drug and gene relationships from text" @default.
- W2368874969 cites W105825613 @default.
- W2368874969 cites W116705248 @default.
- W2368874969 cites W1480376833 @default.
- W2368874969 cites W1482328859 @default.
- W2368874969 cites W1485534561 @default.
- W2368874969 cites W1504212872 @default.
- W2368874969 cites W152117303 @default.
- W2368874969 cites W1525742988 @default.
- W2368874969 cites W1540589956 @default.
- W2368874969 cites W1543923901 @default.
- W2368874969 cites W1547083634 @default.
- W2368874969 cites W1573048037 @default.
- W2368874969 cites W1574376130 @default.
- W2368874969 cites W1595475086 @default.
- W2368874969 cites W1602667807 @default.
- W2368874969 cites W1637593105 @default.
- W2368874969 cites W1667964228 @default.
- W2368874969 cites W1675700964 @default.
- W2368874969 cites W1759990168 @default.
- W2368874969 cites W1790194223 @default.
- W2368874969 cites W1800049145 @default.
- W2368874969 cites W1816480286 @default.
- W2368874969 cites W1849729440 @default.
- W2368874969 cites W1934019294 @default.
- W2368874969 cites W1966791025 @default.
- W2368874969 cites W1969879564 @default.
- W2368874969 cites W1972740417 @default.
- W2368874969 cites W1989534258 @default.
- W2368874969 cites W1996323553 @default.
- W2368874969 cites W1997755606 @default.
- W2368874969 cites W1999277149 @default.
- W2368874969 cites W2001792610 @default.
- W2368874969 cites W2004652662 @default.
- W2368874969 cites W2008085355 @default.
- W2368874969 cites W2012147678 @default.
- W2368874969 cites W2012268371 @default.
- W2368874969 cites W2012285872 @default.
- W2368874969 cites W2016869067 @default.
- W2368874969 cites W2018560257 @default.
- W2368874969 cites W2022359674 @default.
- W2368874969 cites W2023736097 @default.
- W2368874969 cites W2024580920 @default.
- W2368874969 cites W2035938467 @default.
- W2368874969 cites W2040703580 @default.
- W2368874969 cites W2041904585 @default.
- W2368874969 cites W2046229854 @default.
- W2368874969 cites W2050006154 @default.
- W2368874969 cites W2057537609 @default.
- W2368874969 cites W2063007776 @default.
- W2368874969 cites W2063753566 @default.
- W2368874969 cites W2068210077 @default.
- W2368874969 cites W2073857055 @default.
- W2368874969 cites W2074231493 @default.
- W2368874969 cites W2079439844 @default.
- W2368874969 cites W2084036798 @default.
- W2368874969 cites W2093723065 @default.
- W2368874969 cites W2095800292 @default.
- W2368874969 cites W2096175520 @default.
- W2368874969 cites W2097106271 @default.
- W2368874969 cites W2099111195 @default.
- W2368874969 cites W2105892820 @default.
- W2368874969 cites W2106093878 @default.
- W2368874969 cites W2112441656 @default.
- W2368874969 cites W2114498807 @default.
- W2368874969 cites W2114535528 @default.
- W2368874969 cites W2116780029 @default.
- W2368874969 cites W2117243442 @default.
- W2368874969 cites W2124634352 @default.
- W2368874969 cites W2127069089 @default.
- W2368874969 cites W2127385343 @default.
- W2368874969 cites W2128329041 @default.
- W2368874969 cites W2134769633 @default.
- W2368874969 cites W2135937947 @default.
- W2368874969 cites W2139212933 @default.
- W2368874969 cites W2144001613 @default.
- W2368874969 cites W2145948275 @default.
- W2368874969 cites W2149665940 @default.
- W2368874969 cites W2153635508 @default.
- W2368874969 cites W2155042162 @default.
- W2368874969 cites W2158505321 @default.
- W2368874969 cites W2159203162 @default.
- W2368874969 cites W2160948978 @default.
- W2368874969 cites W2161890636 @default.
- W2368874969 cites W2162340487 @default.
- W2368874969 cites W2168151539 @default.
- W2368874969 cites W2170120409 @default.
- W2368874969 cites W2342341603 @default.
- W2368874969 cites W2435251607 @default.
- W2368874969 cites W2612150260 @default.
- W2368874969 cites W2612868855 @default.
- W2368874969 cites W2915610764 @default.
- W2368874969 cites W2953097228 @default.
- W2368874969 cites W2979401726 @default.