Matches in SemOpenAlex for { <https://semopenalex.org/work/W2370193321> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2370193321 abstract "Electricity demand patterns have many variables related to uncertainty behaviour such as gross domestic product, population, import and export. The characteristics of these variables lead to two problems in forecasting the electricity demand. The first problem is the fitness evaluation in the electricity demandforecasting model in which more than one variable are included which leads to increase the sum of squared deviations. The second problem is the use of a single algorithm that failed to solve local optima. These problems resulted in estimation errors and high computational cost. Hybrid genetic algorithm (GA) and Nelder-Mead local search mode 1 has been used to minimize demand estimation errors.However, hybrid GA and Nelder-Mead local search failed to reach the global optimum solution and involve high number of iteration. Hence, an electricity demand forecasting model that reflects the characteristics of electricity demand has been developed in this research. The model is known as the hybrid Real-ValueGA and Extended Nelder-Mead (RVGA-ENM). The GA has been enhanced to accept real value while the Nelder-Mead local search is extended to assist in overcoming the local optima problem. The actual electricity demand data of Turkey and Indonesia were used in the experiments to evaluate the performance of the proposed model. Results of the proposed model were compared to the hybrid GA and Nelder-Mead local search, Real Code Genetic Algorithm and Particle SwarmOptimisation. The findings indicate that the proposed model produced higher accuracy for electricity demand estimation. The proposed RVGA-ENM model can be used to assist decision-makers in forecasting electricity demand." @default.
- W2370193321 created "2016-06-24" @default.
- W2370193321 creator A5063251380 @default.
- W2370193321 date "2014-01-01" @default.
- W2370193321 modified "2023-09-26" @default.
- W2370193321 title "Electricity demand forecasting in Turkey and Indonesia using linear and nonlinear models based on real-value genetic algorithm and extended Nelder-Mead local search" @default.
- W2370193321 hasPublicationYear "2014" @default.
- W2370193321 type Work @default.
- W2370193321 sameAs 2370193321 @default.
- W2370193321 citedByCount "0" @default.
- W2370193321 crossrefType "dissertation" @default.
- W2370193321 hasAuthorship W2370193321A5063251380 @default.
- W2370193321 hasConcept C119599485 @default.
- W2370193321 hasConcept C126255220 @default.
- W2370193321 hasConcept C127413603 @default.
- W2370193321 hasConcept C135320971 @default.
- W2370193321 hasConcept C141934464 @default.
- W2370193321 hasConcept C144024400 @default.
- W2370193321 hasConcept C149923435 @default.
- W2370193321 hasConcept C193809577 @default.
- W2370193321 hasConcept C206658404 @default.
- W2370193321 hasConcept C2908647359 @default.
- W2370193321 hasConcept C33923547 @default.
- W2370193321 hasConcept C41008148 @default.
- W2370193321 hasConcept C42475967 @default.
- W2370193321 hasConcept C85617194 @default.
- W2370193321 hasConcept C8880873 @default.
- W2370193321 hasConceptScore W2370193321C119599485 @default.
- W2370193321 hasConceptScore W2370193321C126255220 @default.
- W2370193321 hasConceptScore W2370193321C127413603 @default.
- W2370193321 hasConceptScore W2370193321C135320971 @default.
- W2370193321 hasConceptScore W2370193321C141934464 @default.
- W2370193321 hasConceptScore W2370193321C144024400 @default.
- W2370193321 hasConceptScore W2370193321C149923435 @default.
- W2370193321 hasConceptScore W2370193321C193809577 @default.
- W2370193321 hasConceptScore W2370193321C206658404 @default.
- W2370193321 hasConceptScore W2370193321C2908647359 @default.
- W2370193321 hasConceptScore W2370193321C33923547 @default.
- W2370193321 hasConceptScore W2370193321C41008148 @default.
- W2370193321 hasConceptScore W2370193321C42475967 @default.
- W2370193321 hasConceptScore W2370193321C85617194 @default.
- W2370193321 hasConceptScore W2370193321C8880873 @default.
- W2370193321 hasIssue "566" @default.
- W2370193321 hasLocation W23701933211 @default.
- W2370193321 hasOpenAccess W2370193321 @default.
- W2370193321 hasPrimaryLocation W23701933211 @default.
- W2370193321 hasRelatedWork W1570486910 @default.
- W2370193321 hasRelatedWork W1977117189 @default.
- W2370193321 hasRelatedWork W1991667190 @default.
- W2370193321 hasRelatedWork W1992320635 @default.
- W2370193321 hasRelatedWork W2000484493 @default.
- W2370193321 hasRelatedWork W2017157434 @default.
- W2370193321 hasRelatedWork W2040364855 @default.
- W2370193321 hasRelatedWork W2064136412 @default.
- W2370193321 hasRelatedWork W2077699106 @default.
- W2370193321 hasRelatedWork W2090733552 @default.
- W2370193321 hasRelatedWork W2105834215 @default.
- W2370193321 hasRelatedWork W2243589461 @default.
- W2370193321 hasRelatedWork W2302163024 @default.
- W2370193321 hasRelatedWork W2347435754 @default.
- W2370193321 hasRelatedWork W2358370466 @default.
- W2370193321 hasRelatedWork W2368747658 @default.
- W2370193321 hasRelatedWork W2525048642 @default.
- W2370193321 hasRelatedWork W2575834755 @default.
- W2370193321 hasRelatedWork W2584111259 @default.
- W2370193321 hasRelatedWork W2592418536 @default.
- W2370193321 hasVolume "5" @default.
- W2370193321 isParatext "false" @default.
- W2370193321 isRetracted "false" @default.
- W2370193321 magId "2370193321" @default.
- W2370193321 workType "dissertation" @default.