Matches in SemOpenAlex for { <https://semopenalex.org/work/W2370253088> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2370253088 endingPage "599" @default.
- W2370253088 startingPage "592" @default.
- W2370253088 abstract "In big data environment, we need new approach for big data analysis, because the characteristics of big data, such as volume, variety, and velocity, can analyze entire data for inferring population. But traditional methods of statistics were focused on small data called random sample extracted from population. So, the classical analyses based on statistics are not suitable to big data analysis. To solve this problem, we propose an approach to efficient big data analysis. In this paper, we consider a big data analysis using principal component analysis, which is popular method in multivariate statistics. To verify the performance of our research, we carry out diverse simulation studies." @default.
- W2370253088 created "2016-06-24" @default.
- W2370253088 creator A5011038929 @default.
- W2370253088 date "2015-12-25" @default.
- W2370253088 modified "2023-10-03" @default.
- W2370253088 title "Big Data Analysis Using Principal Component Analysis" @default.
- W2370253088 cites W1965857814 @default.
- W2370253088 cites W1978764218 @default.
- W2370253088 cites W1999597013 @default.
- W2370253088 cites W2023360390 @default.
- W2370253088 cites W2033537495 @default.
- W2370253088 cites W2040439260 @default.
- W2370253088 cites W2041963641 @default.
- W2370253088 cites W2067543520 @default.
- W2370253088 cites W2087329389 @default.
- W2370253088 cites W2088477804 @default.
- W2370253088 cites W2092437977 @default.
- W2370253088 cites W2094102654 @default.
- W2370253088 cites W2103099926 @default.
- W2370253088 cites W2124563089 @default.
- W2370253088 cites W2133097426 @default.
- W2370253088 cites W2160172778 @default.
- W2370253088 cites W2294798173 @default.
- W2370253088 cites W2469451736 @default.
- W2370253088 doi "https://doi.org/10.5391/jkiis.2015.25.6.592" @default.
- W2370253088 hasPublicationYear "2015" @default.
- W2370253088 type Work @default.
- W2370253088 sameAs 2370253088 @default.
- W2370253088 citedByCount "5" @default.
- W2370253088 countsByYear W23702530882016 @default.
- W2370253088 countsByYear W23702530882017 @default.
- W2370253088 countsByYear W23702530882019 @default.
- W2370253088 countsByYear W23702530882022 @default.
- W2370253088 crossrefType "journal-article" @default.
- W2370253088 hasAuthorship W2370253088A5011038929 @default.
- W2370253088 hasBestOaLocation W23702530881 @default.
- W2370253088 hasConcept C124101348 @default.
- W2370253088 hasConcept C154945302 @default.
- W2370253088 hasConcept C27438332 @default.
- W2370253088 hasConcept C41008148 @default.
- W2370253088 hasConcept C75684735 @default.
- W2370253088 hasConceptScore W2370253088C124101348 @default.
- W2370253088 hasConceptScore W2370253088C154945302 @default.
- W2370253088 hasConceptScore W2370253088C27438332 @default.
- W2370253088 hasConceptScore W2370253088C41008148 @default.
- W2370253088 hasConceptScore W2370253088C75684735 @default.
- W2370253088 hasIssue "6" @default.
- W2370253088 hasLocation W23702530881 @default.
- W2370253088 hasOpenAccess W2370253088 @default.
- W2370253088 hasPrimaryLocation W23702530881 @default.
- W2370253088 hasRelatedWork W2030398758 @default.
- W2370253088 hasRelatedWork W2347219288 @default.
- W2370253088 hasRelatedWork W2362802221 @default.
- W2370253088 hasRelatedWork W2366221835 @default.
- W2370253088 hasRelatedWork W2392472005 @default.
- W2370253088 hasRelatedWork W2555845040 @default.
- W2370253088 hasRelatedWork W2734587838 @default.
- W2370253088 hasRelatedWork W2781925852 @default.
- W2370253088 hasRelatedWork W3166788073 @default.
- W2370253088 hasRelatedWork W4308514089 @default.
- W2370253088 hasVolume "25" @default.
- W2370253088 isParatext "false" @default.
- W2370253088 isRetracted "false" @default.
- W2370253088 magId "2370253088" @default.
- W2370253088 workType "article" @default.