Matches in SemOpenAlex for { <https://semopenalex.org/work/W2371483305> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2371483305 abstract "Researchers often use artificial categories instead of natural ones in psychology experiments in order to avoid familiarity,but these two kinds of categories are different in many ways,especially in category dimensionality.Natural categories have a lot of dimensions,but the artificial ones often have fewer dimensions.Since category materials influence how people learn categories and their representations,it is important to investigate how category dimensionality affects classification learning and feature learning.Hoffman and Murphy(2006) investigated this issue and found people learned high-dimension category no more slowly than low-dimension ones and learned more feature knowledge,which was surprising and contrary to what current category theories predicted.We analyzed the materials they used in their experiments and found that the probabilities of the features were high and different features could be integrated to generate holistic perceptions,which might be the reason behind the results.We thought probabilities of features played an important role in classification learning and feature learning of high-dimension categories.Our hypothesis was that classification learning and feature learning of high-dimension categories would not be advanced if probabilities of features were low and dimensions were poorly integrated. We explored how category dimensionality and probabilities of features affect category learning.80 college students participated in the experiment voluntarily and we analyzed the data using SPSS 11.0.The results showed that if the probabilities of features were high,the classification learning and feature learning of high-dimension category were better than those of the low-dimension one.However,if the probabilities of features were low,the classification learning and feature learning of low-dimension category were better than those of the high-dimension one.From this study we can draw the conclusion that probabilities of features and relations between dimensions play an important role in category learning,which is often ignored in current category theories,and that people tend to grasp the whole mode and holistic perception in high-dimension classification learning and feature learning." @default.
- W2371483305 created "2016-06-24" @default.
- W2371483305 creator A5038272179 @default.
- W2371483305 date "2007-01-01" @default.
- W2371483305 modified "2023-09-22" @default.
- W2371483305 title "The Influence of Probabilities of Features on the Classification Learning and Feature Learning of High-Dimension Categories and Low-Dimension Ones" @default.
- W2371483305 hasPublicationYear "2007" @default.
- W2371483305 type Work @default.
- W2371483305 sameAs 2371483305 @default.
- W2371483305 citedByCount "0" @default.
- W2371483305 crossrefType "journal-article" @default.
- W2371483305 hasAuthorship W2371483305A5038272179 @default.
- W2371483305 hasConcept C111030470 @default.
- W2371483305 hasConcept C119857082 @default.
- W2371483305 hasConcept C138885662 @default.
- W2371483305 hasConcept C154945302 @default.
- W2371483305 hasConcept C15744967 @default.
- W2371483305 hasConcept C169760540 @default.
- W2371483305 hasConcept C180747234 @default.
- W2371483305 hasConcept C202444582 @default.
- W2371483305 hasConcept C26760741 @default.
- W2371483305 hasConcept C2776401178 @default.
- W2371483305 hasConcept C33676613 @default.
- W2371483305 hasConcept C33923547 @default.
- W2371483305 hasConcept C41008148 @default.
- W2371483305 hasConcept C41895202 @default.
- W2371483305 hasConcept C48164120 @default.
- W2371483305 hasConcept C70518039 @default.
- W2371483305 hasConceptScore W2371483305C111030470 @default.
- W2371483305 hasConceptScore W2371483305C119857082 @default.
- W2371483305 hasConceptScore W2371483305C138885662 @default.
- W2371483305 hasConceptScore W2371483305C154945302 @default.
- W2371483305 hasConceptScore W2371483305C15744967 @default.
- W2371483305 hasConceptScore W2371483305C169760540 @default.
- W2371483305 hasConceptScore W2371483305C180747234 @default.
- W2371483305 hasConceptScore W2371483305C202444582 @default.
- W2371483305 hasConceptScore W2371483305C26760741 @default.
- W2371483305 hasConceptScore W2371483305C2776401178 @default.
- W2371483305 hasConceptScore W2371483305C33676613 @default.
- W2371483305 hasConceptScore W2371483305C33923547 @default.
- W2371483305 hasConceptScore W2371483305C41008148 @default.
- W2371483305 hasConceptScore W2371483305C41895202 @default.
- W2371483305 hasConceptScore W2371483305C48164120 @default.
- W2371483305 hasConceptScore W2371483305C70518039 @default.
- W2371483305 hasLocation W23714833051 @default.
- W2371483305 hasOpenAccess W2371483305 @default.
- W2371483305 hasPrimaryLocation W23714833051 @default.
- W2371483305 hasRelatedWork W1509713554 @default.
- W2371483305 hasRelatedWork W1971008547 @default.
- W2371483305 hasRelatedWork W1971242214 @default.
- W2371483305 hasRelatedWork W2000405686 @default.
- W2371483305 hasRelatedWork W2002253037 @default.
- W2371483305 hasRelatedWork W2008702276 @default.
- W2371483305 hasRelatedWork W2017970975 @default.
- W2371483305 hasRelatedWork W2018475972 @default.
- W2371483305 hasRelatedWork W2021768788 @default.
- W2371483305 hasRelatedWork W2029564762 @default.
- W2371483305 hasRelatedWork W2047574277 @default.
- W2371483305 hasRelatedWork W2055640270 @default.
- W2371483305 hasRelatedWork W2063544254 @default.
- W2371483305 hasRelatedWork W2103626223 @default.
- W2371483305 hasRelatedWork W2583448109 @default.
- W2371483305 hasRelatedWork W2622190838 @default.
- W2371483305 hasRelatedWork W2766153660 @default.
- W2371483305 hasRelatedWork W2766228540 @default.
- W2371483305 hasRelatedWork W2802715049 @default.
- W2371483305 hasRelatedWork W3008431176 @default.
- W2371483305 isParatext "false" @default.
- W2371483305 isRetracted "false" @default.
- W2371483305 magId "2371483305" @default.
- W2371483305 workType "article" @default.