Matches in SemOpenAlex for { <https://semopenalex.org/work/W2371816912> ?p ?o ?g. }
- W2371816912 endingPage "1873" @default.
- W2371816912 startingPage "1860" @default.
- W2371816912 abstract "Streak artifacts and mottle noise often appear in low-dose CT (LDCT) images due to excessive quantum noise in low-dose X-ray imaging process, thus degrading CT image quality. This research is aimed at improving the quality of LDCT images via image decomposition and dictionary learning. The proposed method first decomposes a LDCT image into the low-frequency (LF) and high-frequency (HF) parts by a bilateral filter. The HF part is then decomposed into an artifact component and a tissue component by performing dictionary learning (DL) and sparse coding. The tissue component is combined with the LF part to obtain the artifact-suppressed image. At last, a DL method is applied to further reduce the residual artifacts and noise. Different from previous research works with sparse representation, the proposed method does not need to collect training images in advance. The results of numerical simulation and clinical data experiments indicate the effectiveness of the proposed approach." @default.
- W2371816912 created "2016-06-24" @default.
- W2371816912 creator A5003248833 @default.
- W2371816912 creator A5053503107 @default.
- W2371816912 creator A5055720455 @default.
- W2371816912 creator A5057991039 @default.
- W2371816912 creator A5075478974 @default.
- W2371816912 date "2016-06-01" @default.
- W2371816912 modified "2023-10-18" @default.
- W2371816912 title "Learning-Based Artifact Removal via Image Decomposition for Low-Dose CT Image Processing" @default.
- W2371816912 cites W1966364402 @default.
- W2371816912 cites W1979261386 @default.
- W2371816912 cites W1986931325 @default.
- W2371816912 cites W1992687477 @default.
- W2371816912 cites W1998706037 @default.
- W2371816912 cites W2001435563 @default.
- W2371816912 cites W2010641531 @default.
- W2371816912 cites W2011315295 @default.
- W2371816912 cites W2016534852 @default.
- W2371816912 cites W2029109444 @default.
- W2371816912 cites W2035199208 @default.
- W2371816912 cites W2042743306 @default.
- W2371816912 cites W2046119925 @default.
- W2371816912 cites W2049856752 @default.
- W2371816912 cites W2052442392 @default.
- W2371816912 cites W2055043019 @default.
- W2371816912 cites W2096672847 @default.
- W2371816912 cites W2099244020 @default.
- W2371816912 cites W2119259145 @default.
- W2371816912 cites W2121396509 @default.
- W2371816912 cites W2121651107 @default.
- W2371816912 cites W2128659236 @default.
- W2371816912 cites W2133665775 @default.
- W2371816912 cites W2142743510 @default.
- W2371816912 cites W2142884793 @default.
- W2371816912 cites W2149256982 @default.
- W2371816912 cites W2151693816 @default.
- W2371816912 cites W2153663612 @default.
- W2371816912 cites W2154996879 @default.
- W2371816912 cites W2160547390 @default.
- W2371816912 cites W2161969291 @default.
- W2371816912 cites W2165232124 @default.
- W2371816912 cites W2170260757 @default.
- W2371816912 cites W2171697262 @default.
- W2371816912 cites W4250955649 @default.
- W2371816912 cites W4296142362 @default.
- W2371816912 doi "https://doi.org/10.1109/tns.2016.2565604" @default.
- W2371816912 hasPublicationYear "2016" @default.
- W2371816912 type Work @default.
- W2371816912 sameAs 2371816912 @default.
- W2371816912 citedByCount "20" @default.
- W2371816912 countsByYear W23718169122017 @default.
- W2371816912 countsByYear W23718169122018 @default.
- W2371816912 countsByYear W23718169122019 @default.
- W2371816912 countsByYear W23718169122020 @default.
- W2371816912 countsByYear W23718169122021 @default.
- W2371816912 countsByYear W23718169122022 @default.
- W2371816912 countsByYear W23718169122023 @default.
- W2371816912 crossrefType "journal-article" @default.
- W2371816912 hasAuthorship W2371816912A5003248833 @default.
- W2371816912 hasAuthorship W2371816912A5053503107 @default.
- W2371816912 hasAuthorship W2371816912A5055720455 @default.
- W2371816912 hasAuthorship W2371816912A5057991039 @default.
- W2371816912 hasAuthorship W2371816912A5075478974 @default.
- W2371816912 hasConcept C115961682 @default.
- W2371816912 hasConcept C120665830 @default.
- W2371816912 hasConcept C121332964 @default.
- W2371816912 hasConcept C124066611 @default.
- W2371816912 hasConcept C153180895 @default.
- W2371816912 hasConcept C154945302 @default.
- W2371816912 hasConcept C168167062 @default.
- W2371816912 hasConcept C2779010991 @default.
- W2371816912 hasConcept C31972630 @default.
- W2371816912 hasConcept C41008148 @default.
- W2371816912 hasConcept C55020928 @default.
- W2371816912 hasConcept C65185188 @default.
- W2371816912 hasConcept C77637269 @default.
- W2371816912 hasConcept C9417928 @default.
- W2371816912 hasConcept C97355855 @default.
- W2371816912 hasConcept C99498987 @default.
- W2371816912 hasConceptScore W2371816912C115961682 @default.
- W2371816912 hasConceptScore W2371816912C120665830 @default.
- W2371816912 hasConceptScore W2371816912C121332964 @default.
- W2371816912 hasConceptScore W2371816912C124066611 @default.
- W2371816912 hasConceptScore W2371816912C153180895 @default.
- W2371816912 hasConceptScore W2371816912C154945302 @default.
- W2371816912 hasConceptScore W2371816912C168167062 @default.
- W2371816912 hasConceptScore W2371816912C2779010991 @default.
- W2371816912 hasConceptScore W2371816912C31972630 @default.
- W2371816912 hasConceptScore W2371816912C41008148 @default.
- W2371816912 hasConceptScore W2371816912C55020928 @default.
- W2371816912 hasConceptScore W2371816912C65185188 @default.
- W2371816912 hasConceptScore W2371816912C77637269 @default.
- W2371816912 hasConceptScore W2371816912C9417928 @default.
- W2371816912 hasConceptScore W2371816912C97355855 @default.
- W2371816912 hasConceptScore W2371816912C99498987 @default.
- W2371816912 hasFunder F4320321001 @default.
- W2371816912 hasIssue "3" @default.