Matches in SemOpenAlex for { <https://semopenalex.org/work/W2371844720> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2371844720 abstract "Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system's robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm." @default.
- W2371844720 created "2016-06-24" @default.
- W2371844720 creator A5049385011 @default.
- W2371844720 date "2002-01-01" @default.
- W2371844720 modified "2023-09-25" @default.
- W2371844720 title "Robust Iterative Learning Controller for the Non-zero Initial Error Problem on Robot Manipulator" @default.
- W2371844720 hasPublicationYear "2002" @default.
- W2371844720 type Work @default.
- W2371844720 sameAs 2371844720 @default.
- W2371844720 citedByCount "0" @default.
- W2371844720 crossrefType "journal-article" @default.
- W2371844720 hasAuthorship W2371844720A5049385011 @default.
- W2371844720 hasConcept C107464732 @default.
- W2371844720 hasConcept C111919701 @default.
- W2371844720 hasConcept C117619785 @default.
- W2371844720 hasConcept C119599485 @default.
- W2371844720 hasConcept C121332964 @default.
- W2371844720 hasConcept C127413603 @default.
- W2371844720 hasConcept C133731056 @default.
- W2371844720 hasConcept C154945302 @default.
- W2371844720 hasConcept C158622935 @default.
- W2371844720 hasConcept C17500928 @default.
- W2371844720 hasConcept C199360897 @default.
- W2371844720 hasConcept C203479927 @default.
- W2371844720 hasConcept C2775924081 @default.
- W2371844720 hasConcept C2779843651 @default.
- W2371844720 hasConcept C41008148 @default.
- W2371844720 hasConcept C47446073 @default.
- W2371844720 hasConcept C62520636 @default.
- W2371844720 hasConcept C6557445 @default.
- W2371844720 hasConcept C86803240 @default.
- W2371844720 hasConcept C90509273 @default.
- W2371844720 hasConcept C98045186 @default.
- W2371844720 hasConceptScore W2371844720C107464732 @default.
- W2371844720 hasConceptScore W2371844720C111919701 @default.
- W2371844720 hasConceptScore W2371844720C117619785 @default.
- W2371844720 hasConceptScore W2371844720C119599485 @default.
- W2371844720 hasConceptScore W2371844720C121332964 @default.
- W2371844720 hasConceptScore W2371844720C127413603 @default.
- W2371844720 hasConceptScore W2371844720C133731056 @default.
- W2371844720 hasConceptScore W2371844720C154945302 @default.
- W2371844720 hasConceptScore W2371844720C158622935 @default.
- W2371844720 hasConceptScore W2371844720C17500928 @default.
- W2371844720 hasConceptScore W2371844720C199360897 @default.
- W2371844720 hasConceptScore W2371844720C203479927 @default.
- W2371844720 hasConceptScore W2371844720C2775924081 @default.
- W2371844720 hasConceptScore W2371844720C2779843651 @default.
- W2371844720 hasConceptScore W2371844720C41008148 @default.
- W2371844720 hasConceptScore W2371844720C47446073 @default.
- W2371844720 hasConceptScore W2371844720C62520636 @default.
- W2371844720 hasConceptScore W2371844720C6557445 @default.
- W2371844720 hasConceptScore W2371844720C86803240 @default.
- W2371844720 hasConceptScore W2371844720C90509273 @default.
- W2371844720 hasConceptScore W2371844720C98045186 @default.
- W2371844720 hasLocation W23718447201 @default.
- W2371844720 hasOpenAccess W2371844720 @default.
- W2371844720 hasPrimaryLocation W23718447201 @default.
- W2371844720 hasRelatedWork W1173179905 @default.
- W2371844720 hasRelatedWork W1566347311 @default.
- W2371844720 hasRelatedWork W1972193505 @default.
- W2371844720 hasRelatedWork W1980883207 @default.
- W2371844720 hasRelatedWork W2049124078 @default.
- W2371844720 hasRelatedWork W2049838360 @default.
- W2371844720 hasRelatedWork W2097487411 @default.
- W2371844720 hasRelatedWork W2097711335 @default.
- W2371844720 hasRelatedWork W2131725924 @default.
- W2371844720 hasRelatedWork W2151461333 @default.
- W2371844720 hasRelatedWork W2152057656 @default.
- W2371844720 hasRelatedWork W2155827575 @default.
- W2371844720 hasRelatedWork W2324297466 @default.
- W2371844720 hasRelatedWork W2357384499 @default.
- W2371844720 hasRelatedWork W2381408072 @default.
- W2371844720 hasRelatedWork W2555144699 @default.
- W2371844720 hasRelatedWork W2785559568 @default.
- W2371844720 hasRelatedWork W3085760057 @default.
- W2371844720 hasRelatedWork W3094572135 @default.
- W2371844720 hasRelatedWork W3113145823 @default.
- W2371844720 isParatext "false" @default.
- W2371844720 isRetracted "false" @default.
- W2371844720 magId "2371844720" @default.
- W2371844720 workType "article" @default.