Matches in SemOpenAlex for { <https://semopenalex.org/work/W23725892> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W23725892 endingPage "78" @default.
- W23725892 startingPage "60" @default.
- W23725892 abstract "Spectral clustering algorithms recently gained much interest in research community. This surge in interest is mainly due to their ease of use, their applicability to a variety of data types and domains as well as the fact that they very often outperform traditional clustering algorithms. These algorithms consider the pair-wise similarity between data objects and construct a similarity matrix to group data into natural subsets, so that the objects located in the same cluster share many common characteristics. Objects are then allocated into clusters by employing a proximity measure, which is used to compute the similarity or distance between the data objects in the matrix. As such, an early and fundamental step in spectral cluster analysis is the selection of a proximity measure. This choice also has the highest impact on the quality and usability of the end result. However, this crucial aspect is frequently overlooked. For instance, most prior studies use the Euclidean distance measure without explicitly stating the consequences of selecting such measure. To address this issue, we perform a comparative and explorative study on the performance of various existing proximity measures when applied to spectral clustering algorithm. Our results indicate that the commonly used Euclidean distance measure is not always suitable, specifically in domains where the data is highly imbalanced and the correct clustering of boundary objects are critical. Moreover, we also noticed that for numeric data type, the relative distance measures outperformed the absolute distance measures and therefore, may boost the performance of a clustering algorithm if used. As for the datasets with mixed variables, the selection of distance measure for numeric variable again has the highest impact on the end result." @default.
- W23725892 created "2016-06-24" @default.
- W23725892 creator A5017580103 @default.
- W23725892 creator A5069410082 @default.
- W23725892 date "2013-01-01" @default.
- W23725892 modified "2023-09-23" @default.
- W23725892 title "Spectral Clustering: An Explorative Study of Proximity Measures" @default.
- W23725892 cites W1537359429 @default.
- W23725892 cites W1588282782 @default.
- W23725892 cites W1992419399 @default.
- W23725892 cites W2086465016 @default.
- W23725892 cites W2110734043 @default.
- W23725892 cites W2121947440 @default.
- W23725892 cites W2132914434 @default.
- W23725892 cites W2775652543 @default.
- W23725892 cites W4206209869 @default.
- W23725892 cites W4298266977 @default.
- W23725892 doi "https://doi.org/10.1007/978-3-642-37186-8_4" @default.
- W23725892 hasPublicationYear "2013" @default.
- W23725892 type Work @default.
- W23725892 sameAs 23725892 @default.
- W23725892 citedByCount "5" @default.
- W23725892 countsByYear W237258922012 @default.
- W23725892 countsByYear W237258922015 @default.
- W23725892 countsByYear W237258922016 @default.
- W23725892 countsByYear W237258922019 @default.
- W23725892 crossrefType "book-chapter" @default.
- W23725892 hasAuthorship W23725892A5017580103 @default.
- W23725892 hasAuthorship W23725892A5069410082 @default.
- W23725892 hasBestOaLocation W237258922 @default.
- W23725892 hasConcept C103278499 @default.
- W23725892 hasConcept C105611402 @default.
- W23725892 hasConcept C107457646 @default.
- W23725892 hasConcept C111208986 @default.
- W23725892 hasConcept C11413529 @default.
- W23725892 hasConcept C115961682 @default.
- W23725892 hasConcept C120174047 @default.
- W23725892 hasConcept C124101348 @default.
- W23725892 hasConcept C153180895 @default.
- W23725892 hasConcept C154945302 @default.
- W23725892 hasConcept C170130773 @default.
- W23725892 hasConcept C2639959 @default.
- W23725892 hasConcept C2776517306 @default.
- W23725892 hasConcept C2780009758 @default.
- W23725892 hasConcept C41008148 @default.
- W23725892 hasConcept C73555534 @default.
- W23725892 hasConceptScore W23725892C103278499 @default.
- W23725892 hasConceptScore W23725892C105611402 @default.
- W23725892 hasConceptScore W23725892C107457646 @default.
- W23725892 hasConceptScore W23725892C111208986 @default.
- W23725892 hasConceptScore W23725892C11413529 @default.
- W23725892 hasConceptScore W23725892C115961682 @default.
- W23725892 hasConceptScore W23725892C120174047 @default.
- W23725892 hasConceptScore W23725892C124101348 @default.
- W23725892 hasConceptScore W23725892C153180895 @default.
- W23725892 hasConceptScore W23725892C154945302 @default.
- W23725892 hasConceptScore W23725892C170130773 @default.
- W23725892 hasConceptScore W23725892C2639959 @default.
- W23725892 hasConceptScore W23725892C2776517306 @default.
- W23725892 hasConceptScore W23725892C2780009758 @default.
- W23725892 hasConceptScore W23725892C41008148 @default.
- W23725892 hasConceptScore W23725892C73555534 @default.
- W23725892 hasLocation W237258921 @default.
- W23725892 hasLocation W237258922 @default.
- W23725892 hasOpenAccess W23725892 @default.
- W23725892 hasPrimaryLocation W237258921 @default.
- W23725892 hasRelatedWork W2036723322 @default.
- W23725892 hasRelatedWork W2119445984 @default.
- W23725892 hasRelatedWork W2129888254 @default.
- W23725892 hasRelatedWork W2359343796 @default.
- W23725892 hasRelatedWork W23725892 @default.
- W23725892 hasRelatedWork W2569386551 @default.
- W23725892 hasRelatedWork W2811335600 @default.
- W23725892 hasRelatedWork W2945382089 @default.
- W23725892 hasRelatedWork W4220810985 @default.
- W23725892 hasRelatedWork W4285095000 @default.
- W23725892 isParatext "false" @default.
- W23725892 isRetracted "false" @default.
- W23725892 magId "23725892" @default.
- W23725892 workType "book-chapter" @default.