Matches in SemOpenAlex for { <https://semopenalex.org/work/W2373555655> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2373555655 endingPage "2387" @default.
- W2373555655 startingPage "2379" @default.
- W2373555655 abstract "Data mining applications are becoming a more common tool in understanding and solving educational and administrative problems in higher education. In general, research in educational mining focuses on modeling student’s performance instead of instructors’ performance. One of the common tools to evaluate instructors’ performance is the course evaluation questionnaire to evaluate based on students’ perception. In this paper, four different classification techniques—decision tree algorithms, support vector machines, artificial neural networks, and discriminant analysis—are used to build classifier models. Their performances are compared over a data set composed of responses of students to a real course evaluation questionnaire using accuracy, precision, recall, and specificity performance metrics. Although all the classifier models show comparably high classification performances, C5.0 classifier is the best with respect to accuracy, precision, and specificity. In addition, an analysis of the variable importance for each classifier model is done. Accordingly, it is shown that many of the questions in the course evaluation questionnaire appear to be irrelevant. Furthermore, the analysis shows that the instructors’ success based on the students’ perception mainly depends on the interest of the students in the course. The findings of this paper indicate the effectiveness and expressiveness of data mining models in course evaluation and higher education mining. Moreover, these findings may be used to improve the measurement instruments." @default.
- W2373555655 created "2016-06-24" @default.
- W2373555655 creator A5047072808 @default.
- W2373555655 date "2016-01-01" @default.
- W2373555655 modified "2023-10-17" @default.
- W2373555655 title "Predicting Instructor Performance Using Data Mining Techniques in Higher Education" @default.
- W2373555655 cites W1574903860 @default.
- W2373555655 cites W1981335539 @default.
- W2373555655 cites W1993165699 @default.
- W2373555655 cites W1994024671 @default.
- W2373555655 cites W1994698631 @default.
- W2373555655 cites W2019761910 @default.
- W2373555655 cites W2021601071 @default.
- W2373555655 cites W2027711578 @default.
- W2373555655 cites W2034842808 @default.
- W2373555655 cites W2040072441 @default.
- W2373555655 cites W2049065259 @default.
- W2373555655 cites W2067885219 @default.
- W2373555655 cites W2084325225 @default.
- W2373555655 cites W2095323930 @default.
- W2373555655 cites W2121392381 @default.
- W2373555655 cites W2150364563 @default.
- W2373555655 cites W2161307025 @default.
- W2373555655 cites W2331386885 @default.
- W2373555655 cites W3004732066 @default.
- W2373555655 cites W4250469042 @default.
- W2373555655 cites W4255472464 @default.
- W2373555655 doi "https://doi.org/10.1109/access.2016.2568756" @default.
- W2373555655 hasPublicationYear "2016" @default.
- W2373555655 type Work @default.
- W2373555655 sameAs 2373555655 @default.
- W2373555655 citedByCount "88" @default.
- W2373555655 countsByYear W23735556552016 @default.
- W2373555655 countsByYear W23735556552017 @default.
- W2373555655 countsByYear W23735556552018 @default.
- W2373555655 countsByYear W23735556552019 @default.
- W2373555655 countsByYear W23735556552020 @default.
- W2373555655 countsByYear W23735556552021 @default.
- W2373555655 countsByYear W23735556552022 @default.
- W2373555655 countsByYear W23735556552023 @default.
- W2373555655 crossrefType "journal-article" @default.
- W2373555655 hasAuthorship W2373555655A5047072808 @default.
- W2373555655 hasBestOaLocation W23735556551 @default.
- W2373555655 hasConcept C119857082 @default.
- W2373555655 hasConcept C124101348 @default.
- W2373555655 hasConcept C154945302 @default.
- W2373555655 hasConcept C2522767166 @default.
- W2373555655 hasConcept C2777598771 @default.
- W2373555655 hasConcept C41008148 @default.
- W2373555655 hasConceptScore W2373555655C119857082 @default.
- W2373555655 hasConceptScore W2373555655C124101348 @default.
- W2373555655 hasConceptScore W2373555655C154945302 @default.
- W2373555655 hasConceptScore W2373555655C2522767166 @default.
- W2373555655 hasConceptScore W2373555655C2777598771 @default.
- W2373555655 hasConceptScore W2373555655C41008148 @default.
- W2373555655 hasLocation W23735556551 @default.
- W2373555655 hasLocation W23735556552 @default.
- W2373555655 hasOpenAccess W2373555655 @default.
- W2373555655 hasPrimaryLocation W23735556551 @default.
- W2373555655 hasRelatedWork W2961085424 @default.
- W2373555655 hasRelatedWork W3046775127 @default.
- W2373555655 hasRelatedWork W3170094116 @default.
- W2373555655 hasRelatedWork W3209574120 @default.
- W2373555655 hasRelatedWork W4205958290 @default.
- W2373555655 hasRelatedWork W4285260836 @default.
- W2373555655 hasRelatedWork W4286629047 @default.
- W2373555655 hasRelatedWork W4306321456 @default.
- W2373555655 hasRelatedWork W4306674287 @default.
- W2373555655 hasRelatedWork W4224009465 @default.
- W2373555655 hasVolume "4" @default.
- W2373555655 isParatext "false" @default.
- W2373555655 isRetracted "false" @default.
- W2373555655 magId "2373555655" @default.
- W2373555655 workType "article" @default.