Matches in SemOpenAlex for { <https://semopenalex.org/work/W2374349483> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2374349483 endingPage "7" @default.
- W2374349483 startingPage "642" @default.
- W2374349483 abstract "Through the multi-stage hierarchical Bayesian model and Markov Chain Monte Carlo methods, Bayesian statistics can be used in dependent spatial data analysis, including disease mapping in small areas, disease clustering, and geographical correlation studies. Recently, Bayesian spatial models have been developed with many types, which have made considerable progress in data analysis. This paper introduces several approaches that have been fully developed and applied, such as BYM model,joint model, semi-parameter model, moving average model and so on. Recently,many studies focused on the comparison work through Deviance Information criterion. Those results show that BYM model and MIX model of semi-parameter model could obtain better results. As more research going on, Bayesian statistics will have more space in applications of spatial epidemiology." @default.
- W2374349483 created "2016-06-24" @default.
- W2374349483 creator A5044902751 @default.
- W2374349483 creator A5044991530 @default.
- W2374349483 creator A5078988597 @default.
- W2374349483 date "2008-11-01" @default.
- W2374349483 modified "2023-09-23" @default.
- W2374349483 title "[Bayesian statistics in spatial epidemiology]." @default.
- W2374349483 doi "https://doi.org/10.3785/j.issn.1008-9292.2008.06.017" @default.
- W2374349483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19084965" @default.
- W2374349483 hasPublicationYear "2008" @default.
- W2374349483 type Work @default.
- W2374349483 sameAs 2374349483 @default.
- W2374349483 citedByCount "2" @default.
- W2374349483 countsByYear W23743494832018 @default.
- W2374349483 crossrefType "journal-article" @default.
- W2374349483 hasAuthorship W2374349483A5044902751 @default.
- W2374349483 hasAuthorship W2374349483A5044991530 @default.
- W2374349483 hasAuthorship W2374349483A5078988597 @default.
- W2374349483 hasConcept C101112237 @default.
- W2374349483 hasConcept C105795698 @default.
- W2374349483 hasConcept C107130276 @default.
- W2374349483 hasConcept C107673813 @default.
- W2374349483 hasConcept C111350023 @default.
- W2374349483 hasConcept C119857082 @default.
- W2374349483 hasConcept C124101348 @default.
- W2374349483 hasConcept C126322002 @default.
- W2374349483 hasConcept C149782125 @default.
- W2374349483 hasConcept C154945302 @default.
- W2374349483 hasConcept C159620131 @default.
- W2374349483 hasConcept C160234255 @default.
- W2374349483 hasConcept C17634605 @default.
- W2374349483 hasConcept C186744025 @default.
- W2374349483 hasConcept C33923547 @default.
- W2374349483 hasConcept C41008148 @default.
- W2374349483 hasConcept C71924100 @default.
- W2374349483 hasConcept C71983512 @default.
- W2374349483 hasConcept C73555534 @default.
- W2374349483 hasConceptScore W2374349483C101112237 @default.
- W2374349483 hasConceptScore W2374349483C105795698 @default.
- W2374349483 hasConceptScore W2374349483C107130276 @default.
- W2374349483 hasConceptScore W2374349483C107673813 @default.
- W2374349483 hasConceptScore W2374349483C111350023 @default.
- W2374349483 hasConceptScore W2374349483C119857082 @default.
- W2374349483 hasConceptScore W2374349483C124101348 @default.
- W2374349483 hasConceptScore W2374349483C126322002 @default.
- W2374349483 hasConceptScore W2374349483C149782125 @default.
- W2374349483 hasConceptScore W2374349483C154945302 @default.
- W2374349483 hasConceptScore W2374349483C159620131 @default.
- W2374349483 hasConceptScore W2374349483C160234255 @default.
- W2374349483 hasConceptScore W2374349483C17634605 @default.
- W2374349483 hasConceptScore W2374349483C186744025 @default.
- W2374349483 hasConceptScore W2374349483C33923547 @default.
- W2374349483 hasConceptScore W2374349483C41008148 @default.
- W2374349483 hasConceptScore W2374349483C71924100 @default.
- W2374349483 hasConceptScore W2374349483C71983512 @default.
- W2374349483 hasConceptScore W2374349483C73555534 @default.
- W2374349483 hasIssue "6" @default.
- W2374349483 hasLocation W23743494831 @default.
- W2374349483 hasOpenAccess W2374349483 @default.
- W2374349483 hasPrimaryLocation W23743494831 @default.
- W2374349483 hasRelatedWork W11602608 @default.
- W2374349483 hasRelatedWork W141010441 @default.
- W2374349483 hasRelatedWork W1489507696 @default.
- W2374349483 hasRelatedWork W1531406273 @default.
- W2374349483 hasRelatedWork W1566333899 @default.
- W2374349483 hasRelatedWork W1750437422 @default.
- W2374349483 hasRelatedWork W1988684120 @default.
- W2374349483 hasRelatedWork W2145545054 @default.
- W2374349483 hasRelatedWork W2185831808 @default.
- W2374349483 hasRelatedWork W2273539566 @default.
- W2374349483 hasRelatedWork W2291262474 @default.
- W2374349483 hasRelatedWork W273367505 @default.
- W2374349483 hasRelatedWork W2735118305 @default.
- W2374349483 hasRelatedWork W2892077551 @default.
- W2374349483 hasRelatedWork W2954423183 @default.
- W2374349483 hasRelatedWork W2978108667 @default.
- W2374349483 hasRelatedWork W3028799743 @default.
- W2374349483 hasRelatedWork W3033488483 @default.
- W2374349483 hasRelatedWork W598752062 @default.
- W2374349483 hasRelatedWork W619571101 @default.
- W2374349483 hasVolume "37" @default.
- W2374349483 isParatext "false" @default.
- W2374349483 isRetracted "false" @default.
- W2374349483 magId "2374349483" @default.
- W2374349483 workType "article" @default.