Matches in SemOpenAlex for { <https://semopenalex.org/work/W2374717562> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2374717562 abstract "Efficient face alignment is the key problem for the face applications on the mobile platform which has limited computing and storage capacity.We studied the problem of fast face alignment on the mobile platform.To reduce the computing and storage requirements for face alignment,sparse constrained cascade regression model was proposed in this paper.Sparse constraint was introduced to learn the regression matrix,which can not only select the robust features,but also compress the model size to about 5% compared to the original model.We further constructed the fast face alignment algorithm on mobile platform based on sparse cascade regression model.First,the facial landmarks on the tip of the nose,the corners of the mouth and eyes are quickly located by binary features after face detection,and face pose is estimated.Face image is rotated to frontal view according to the face pose.Then,the corresponding model(frontal model or profile model)is selected according to the face pose,and cascade regression with sparse constraint is used to face alignment.Extensive experiments show that the alignment method proposed in this paper is effective and efficient with compact model size.On the Samsung smart phone of Note3,the alignment time for each face image is about10 ms,and the size of whole apk is only 4MB,which is suitable for face applications on mobile platform." @default.
- W2374717562 created "2016-06-24" @default.
- W2374717562 creator A5020094730 @default.
- W2374717562 date "2015-01-01" @default.
- W2374717562 modified "2023-09-26" @default.
- W2374717562 title "Fast Face Alignment Method Based on Sparse Cascade Regression and its Application on Mobile Devices" @default.
- W2374717562 hasPublicationYear "2015" @default.
- W2374717562 type Work @default.
- W2374717562 sameAs 2374717562 @default.
- W2374717562 citedByCount "0" @default.
- W2374717562 crossrefType "journal-article" @default.
- W2374717562 hasAuthorship W2374717562A5020094730 @default.
- W2374717562 hasConcept C144024400 @default.
- W2374717562 hasConcept C153180895 @default.
- W2374717562 hasConcept C154945302 @default.
- W2374717562 hasConcept C185592680 @default.
- W2374717562 hasConcept C2524010 @default.
- W2374717562 hasConcept C2776036281 @default.
- W2374717562 hasConcept C2779304628 @default.
- W2374717562 hasConcept C31510193 @default.
- W2374717562 hasConcept C31972630 @default.
- W2374717562 hasConcept C33923547 @default.
- W2374717562 hasConcept C34146451 @default.
- W2374717562 hasConcept C36289849 @default.
- W2374717562 hasConcept C41008148 @default.
- W2374717562 hasConcept C43617362 @default.
- W2374717562 hasConceptScore W2374717562C144024400 @default.
- W2374717562 hasConceptScore W2374717562C153180895 @default.
- W2374717562 hasConceptScore W2374717562C154945302 @default.
- W2374717562 hasConceptScore W2374717562C185592680 @default.
- W2374717562 hasConceptScore W2374717562C2524010 @default.
- W2374717562 hasConceptScore W2374717562C2776036281 @default.
- W2374717562 hasConceptScore W2374717562C2779304628 @default.
- W2374717562 hasConceptScore W2374717562C31510193 @default.
- W2374717562 hasConceptScore W2374717562C31972630 @default.
- W2374717562 hasConceptScore W2374717562C33923547 @default.
- W2374717562 hasConceptScore W2374717562C34146451 @default.
- W2374717562 hasConceptScore W2374717562C36289849 @default.
- W2374717562 hasConceptScore W2374717562C41008148 @default.
- W2374717562 hasConceptScore W2374717562C43617362 @default.
- W2374717562 hasLocation W23747175621 @default.
- W2374717562 hasOpenAccess W2374717562 @default.
- W2374717562 hasPrimaryLocation W23747175621 @default.
- W2374717562 hasRelatedWork W1896028558 @default.
- W2374717562 hasRelatedWork W2022154621 @default.
- W2374717562 hasRelatedWork W2121979725 @default.
- W2374717562 hasRelatedWork W2241943627 @default.
- W2374717562 hasRelatedWork W2380300533 @default.
- W2374717562 hasRelatedWork W2386097006 @default.
- W2374717562 hasRelatedWork W2522061713 @default.
- W2374717562 hasRelatedWork W2562994715 @default.
- W2374717562 hasRelatedWork W2606794139 @default.
- W2374717562 hasRelatedWork W2962819150 @default.
- W2374717562 hasRelatedWork W2963483939 @default.
- W2374717562 hasRelatedWork W2965690390 @default.
- W2374717562 hasRelatedWork W2995982174 @default.
- W2374717562 hasRelatedWork W3172093591 @default.
- W2374717562 hasRelatedWork W1872591832 @default.
- W2374717562 hasRelatedWork W2923808639 @default.
- W2374717562 hasRelatedWork W2931096616 @default.
- W2374717562 hasRelatedWork W2932243978 @default.
- W2374717562 hasRelatedWork W3018294474 @default.
- W2374717562 hasRelatedWork W3141607727 @default.
- W2374717562 isParatext "false" @default.
- W2374717562 isRetracted "false" @default.
- W2374717562 magId "2374717562" @default.
- W2374717562 workType "article" @default.