Matches in SemOpenAlex for { <https://semopenalex.org/work/W2376571845> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2376571845 abstract "With the rapid development of China's automobile industry, automobile enterprises are facing increasingly fierce competition. At the same time, with the dramatic growth in car ownership, automobile after-sales service market has become more and more beneficial. As a result, the competition among automobile enterprises has already changed from the car's sales to the after-sales service. As an important sector of automotive companies to maintain the customer relationship, the after-sales maintenance services department of 4S shop should accelerate the construction of the customer relationship management(CRM) system based on the information technology and take the customer as the center. For instance, a 4S shop needs to handle the vast customer group which consists of almost all the owners of its brand cars, and segment these customers. Data mining technologies have been applied more and more widely in business environment in recent years. After-sales maintenance services departments of 4S shop also hope to use the advanced data mining technologies to support enterprise customer segmentation and customer relationship management policy making. Many data mining technologies including K-means and Self-Organizing Map(SOM) methods can supply enterprises with better methods of segmenting their customers and developing marketing strategies tailored to specific segments and individuals. Experience, however, shows that business is ceaselessly changing and customers continue to evolve over time. Customer segments and related knowledge discovered from multiple data sources change over time as the customer base changes. However, much research has assumed that customer segments and their members are stable. To solve these problems, based on the characteristic of the automotive maintenance industry, this study discusses customer segmentation methods and customer cluster change mining methods based on the CRISP-DM model. After fully understanding the business needs and data attributes, a customer segmentation indicator model-YKFM is built based on the characteristic of automotive maintenance transaction data in the data preparation process. In the modeling process, the self-organizing maps neural network is firstly applied to the customer clustering, and the customer segmentation result is generated by processing the initial clustering result. Secondly, based on the segmentation results the customer change over time is analyzed from both customer cluster and customer individual perspectives. From the customer cluster perspective, the change of amount and attributes of cluster members are defined and detected. From the individual perspective, this study builds a transaction path for each customer and finds the dominant transition paths that the majority of customers follow during their life circle by association analysis. In the evaluation and deployment processes, this study incorporates the proposed methods into the application of customer segmentation of a 4S shop using the transaction data in resent five years. The result of the customer segmentation and the pattern of customer shifts are presented. The real-world data experiment indicates the feasibility and effectiveness of the proposed methods." @default.
- W2376571845 created "2016-06-24" @default.
- W2376571845 creator A5060954033 @default.
- W2376571845 date "2015-01-01" @default.
- W2376571845 modified "2023-09-26" @default.
- W2376571845 title "Customer Segmentation and Change Mining Based on Customer Behavior for 4S Shop" @default.
- W2376571845 hasPublicationYear "2015" @default.
- W2376571845 type Work @default.
- W2376571845 sameAs 2376571845 @default.
- W2376571845 citedByCount "0" @default.
- W2376571845 crossrefType "proceedings-article" @default.
- W2376571845 hasAuthorship W2376571845A5060954033 @default.
- W2376571845 hasConcept C101276457 @default.
- W2376571845 hasConcept C125308379 @default.
- W2376571845 hasConcept C127413603 @default.
- W2376571845 hasConcept C140781008 @default.
- W2376571845 hasConcept C144133560 @default.
- W2376571845 hasConcept C146978453 @default.
- W2376571845 hasConcept C162853370 @default.
- W2376571845 hasConcept C18903297 @default.
- W2376571845 hasConcept C2777276756 @default.
- W2376571845 hasConcept C2780378061 @default.
- W2376571845 hasConcept C31367271 @default.
- W2376571845 hasConcept C43595421 @default.
- W2376571845 hasConcept C526921623 @default.
- W2376571845 hasConcept C57660159 @default.
- W2376571845 hasConcept C63207073 @default.
- W2376571845 hasConcept C86803240 @default.
- W2376571845 hasConcept C91306197 @default.
- W2376571845 hasConcept C98825075 @default.
- W2376571845 hasConceptScore W2376571845C101276457 @default.
- W2376571845 hasConceptScore W2376571845C125308379 @default.
- W2376571845 hasConceptScore W2376571845C127413603 @default.
- W2376571845 hasConceptScore W2376571845C140781008 @default.
- W2376571845 hasConceptScore W2376571845C144133560 @default.
- W2376571845 hasConceptScore W2376571845C146978453 @default.
- W2376571845 hasConceptScore W2376571845C162853370 @default.
- W2376571845 hasConceptScore W2376571845C18903297 @default.
- W2376571845 hasConceptScore W2376571845C2777276756 @default.
- W2376571845 hasConceptScore W2376571845C2780378061 @default.
- W2376571845 hasConceptScore W2376571845C31367271 @default.
- W2376571845 hasConceptScore W2376571845C43595421 @default.
- W2376571845 hasConceptScore W2376571845C526921623 @default.
- W2376571845 hasConceptScore W2376571845C57660159 @default.
- W2376571845 hasConceptScore W2376571845C63207073 @default.
- W2376571845 hasConceptScore W2376571845C86803240 @default.
- W2376571845 hasConceptScore W2376571845C91306197 @default.
- W2376571845 hasConceptScore W2376571845C98825075 @default.
- W2376571845 hasLocation W23765718451 @default.
- W2376571845 hasOpenAccess W2376571845 @default.
- W2376571845 hasPrimaryLocation W23765718451 @default.
- W2376571845 hasRelatedWork W1987858311 @default.
- W2376571845 hasRelatedWork W1993425841 @default.
- W2376571845 hasRelatedWork W2035269695 @default.
- W2376571845 hasRelatedWork W2062625370 @default.
- W2376571845 hasRelatedWork W2117852901 @default.
- W2376571845 hasRelatedWork W2136937872 @default.
- W2376571845 hasRelatedWork W2169669235 @default.
- W2376571845 hasRelatedWork W2170474188 @default.
- W2376571845 hasRelatedWork W2181696999 @default.
- W2376571845 hasRelatedWork W2204903869 @default.
- W2376571845 hasRelatedWork W2244494800 @default.
- W2376571845 hasRelatedWork W2349269937 @default.
- W2376571845 hasRelatedWork W2352919743 @default.
- W2376571845 hasRelatedWork W2378960949 @default.
- W2376571845 hasRelatedWork W2384480162 @default.
- W2376571845 hasRelatedWork W2511270006 @default.
- W2376571845 hasRelatedWork W2888306868 @default.
- W2376571845 hasRelatedWork W3168572308 @default.
- W2376571845 hasRelatedWork W790253869 @default.
- W2376571845 hasRelatedWork W874313651 @default.
- W2376571845 isParatext "false" @default.
- W2376571845 isRetracted "false" @default.
- W2376571845 magId "2376571845" @default.
- W2376571845 workType "article" @default.