Matches in SemOpenAlex for { <https://semopenalex.org/work/W2377210263> ?p ?o ?g. }
- W2377210263 endingPage "121703" @default.
- W2377210263 startingPage "121703" @default.
- W2377210263 abstract "With the transmission matrix (TM) of the whole optical system measured, the image of the object behind a turbid medium can be recovered from its speckle field by means of an image reconstruction algorithm. Instead of Tikhonov regularization algorithm (TRA), the total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3) is introduced to recover object images. As a total variation (TV)-based approach, TVAL3 allows to effectively damp more noise and preserve more edges compared with TRA, thus providing more outstanding image quality. Different levels of detector noise and TM-measurement noise are successively added to analyze the antinoise performance of these two algorithms. Simulation results show that TVAL3 is able to recover more details and suppress more noise than TRA under different noise levels, thus providing much more excellent image quality. Furthermore, whether it be detector noise or TM-measurement noise, the reconstruction images obtained by TVAL3 at SNR=15 dB are far superior to those by TRA at SNR=50 dB." @default.
- W2377210263 created "2016-06-24" @default.
- W2377210263 creator A5028924242 @default.
- W2377210263 creator A5057371389 @default.
- W2377210263 creator A5076919067 @default.
- W2377210263 creator A5084010299 @default.
- W2377210263 creator A5084898827 @default.
- W2377210263 date "2016-05-11" @default.
- W2377210263 modified "2023-10-14" @default.
- W2377210263 title "Total variation optimization for imaging through turbid media with transmission matrix" @default.
- W2377210263 cites W1970850819 @default.
- W2377210263 cites W1978333359 @default.
- W2377210263 cites W1987645145 @default.
- W2377210263 cites W2000443157 @default.
- W2377210263 cites W2001116122 @default.
- W2377210263 cites W2001278503 @default.
- W2377210263 cites W2007593159 @default.
- W2377210263 cites W2013125633 @default.
- W2377210263 cites W2019236124 @default.
- W2377210263 cites W2028349405 @default.
- W2377210263 cites W2032396274 @default.
- W2377210263 cites W2032550842 @default.
- W2377210263 cites W2035128422 @default.
- W2377210263 cites W2048269000 @default.
- W2377210263 cites W2057624533 @default.
- W2377210263 cites W2070056747 @default.
- W2377210263 cites W2070544768 @default.
- W2377210263 cites W2076605490 @default.
- W2377210263 cites W2079177770 @default.
- W2377210263 cites W2087957196 @default.
- W2377210263 cites W2091593239 @default.
- W2377210263 cites W2092583264 @default.
- W2377210263 cites W2095036901 @default.
- W2377210263 cites W2102368371 @default.
- W2377210263 cites W2103559027 @default.
- W2377210263 cites W2112924439 @default.
- W2377210263 cites W2130120519 @default.
- W2377210263 cites W2133665775 @default.
- W2377210263 cites W2137936690 @default.
- W2377210263 cites W2153936654 @default.
- W2377210263 cites W2163973643 @default.
- W2377210263 cites W2167137033 @default.
- W2377210263 cites W2170152275 @default.
- W2377210263 cites W3098833814 @default.
- W2377210263 cites W3101457931 @default.
- W2377210263 cites W3102923766 @default.
- W2377210263 cites W3124114587 @default.
- W2377210263 doi "https://doi.org/10.1117/1.oe.55.12.121703" @default.
- W2377210263 hasPublicationYear "2016" @default.
- W2377210263 type Work @default.
- W2377210263 sameAs 2377210263 @default.
- W2377210263 citedByCount "3" @default.
- W2377210263 countsByYear W23772102632017 @default.
- W2377210263 countsByYear W23772102632022 @default.
- W2377210263 countsByYear W23772102632023 @default.
- W2377210263 crossrefType "journal-article" @default.
- W2377210263 hasAuthorship W2377210263A5028924242 @default.
- W2377210263 hasAuthorship W2377210263A5057371389 @default.
- W2377210263 hasAuthorship W2377210263A5076919067 @default.
- W2377210263 hasAuthorship W2377210263A5084010299 @default.
- W2377210263 hasAuthorship W2377210263A5084898827 @default.
- W2377210263 hasConcept C102290492 @default.
- W2377210263 hasConcept C11413529 @default.
- W2377210263 hasConcept C115961682 @default.
- W2377210263 hasConcept C120665830 @default.
- W2377210263 hasConcept C121332964 @default.
- W2377210263 hasConcept C134306372 @default.
- W2377210263 hasConcept C135252773 @default.
- W2377210263 hasConcept C141379421 @default.
- W2377210263 hasConcept C152442038 @default.
- W2377210263 hasConcept C154945302 @default.
- W2377210263 hasConcept C163294075 @default.
- W2377210263 hasConcept C180940675 @default.
- W2377210263 hasConcept C207282899 @default.
- W2377210263 hasConcept C31972630 @default.
- W2377210263 hasConcept C33923547 @default.
- W2377210263 hasConcept C35772409 @default.
- W2377210263 hasConcept C41008148 @default.
- W2377210263 hasConcept C55020928 @default.
- W2377210263 hasConcept C761482 @default.
- W2377210263 hasConcept C76155785 @default.
- W2377210263 hasConcept C94915269 @default.
- W2377210263 hasConcept C99498987 @default.
- W2377210263 hasConceptScore W2377210263C102290492 @default.
- W2377210263 hasConceptScore W2377210263C11413529 @default.
- W2377210263 hasConceptScore W2377210263C115961682 @default.
- W2377210263 hasConceptScore W2377210263C120665830 @default.
- W2377210263 hasConceptScore W2377210263C121332964 @default.
- W2377210263 hasConceptScore W2377210263C134306372 @default.
- W2377210263 hasConceptScore W2377210263C135252773 @default.
- W2377210263 hasConceptScore W2377210263C141379421 @default.
- W2377210263 hasConceptScore W2377210263C152442038 @default.
- W2377210263 hasConceptScore W2377210263C154945302 @default.
- W2377210263 hasConceptScore W2377210263C163294075 @default.
- W2377210263 hasConceptScore W2377210263C180940675 @default.
- W2377210263 hasConceptScore W2377210263C207282899 @default.
- W2377210263 hasConceptScore W2377210263C31972630 @default.
- W2377210263 hasConceptScore W2377210263C33923547 @default.