Matches in SemOpenAlex for { <https://semopenalex.org/work/W2378121013> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2378121013 abstract "Open channels are important water structures for irrigation, water supply, power generation, and drainage. The primary concern of designing a channel is to determine optimum dimensions while minimizing construction costs. In this paper, a memetic metaheuristic algorithms called “shuffled frog-leaping algorithm” (SFLA) is used to optimize sampling design variables of composite open channels. The results of optimization using SFLA and a generic language for interactive general optimization (LINGO) software are compared with other metaheuristic algorithms, such as genetic algorithm (GA), simulated annealing (SA), Lagrange multiplier method (LMM), ant colony optimization (ACO), improved ant colony optimization (IACO), and particle swarm optimization (PSO). Four common nonlinear models in open-channel designing are considered in this study: (1) model I (M1), which applies an equivalent roughness coefficient without any sectional division following the Manning equation; (2) model II (M2), which considers a variation of horizontal velocity over the cross section; (3) model III (M3), which determines minimum construction costs that is constrained on maximum permissible velocities corresponding to different lining materials of the composite channel cross section; and (4) model IV (M4), which imposes additional side-slope constraints over model II. Optimization results using SFLA and LINGO clearly show improvements in objective function in all the studied models. SFLA and LINGO show 14.93 and 12.64% improvement, respectively, in M1 compared to the LMM, GA, ACO, and IACO; 23.43 and 19.03% in M2 compared to GA, ACO, and IACO; 1.34 and 0.63% in M3 compared to GA and ACO; and 26.14 and 21.88% in M4 compared to GA and PSO. An improvement in the objective function is also obtained in SFLA over LINGO by 2.28, 4.40, 0.71, and 4.26%, respectively, in models M1 through M4. This result evidently demonstrates the efficiency of SFLA in optimizing composite open-channel design for increasing economic benefit." @default.
- W2378121013 created "2016-06-24" @default.
- W2378121013 creator A5001139908 @default.
- W2378121013 creator A5007760130 @default.
- W2378121013 creator A5022491999 @default.
- W2378121013 creator A5063297680 @default.
- W2378121013 creator A5077536887 @default.
- W2378121013 date "2016-10-01" @default.
- W2378121013 modified "2023-10-16" @default.
- W2378121013 title "Shuffled Frog-Leaping Algorithm for Optimal Design of Open Channels" @default.
- W2378121013 cites W1787683562 @default.
- W2378121013 cites W1966300670 @default.
- W2378121013 cites W1971283609 @default.
- W2378121013 cites W1972310099 @default.
- W2378121013 cites W1978848602 @default.
- W2378121013 cites W1989879314 @default.
- W2378121013 cites W1992832382 @default.
- W2378121013 cites W1994095393 @default.
- W2378121013 cites W2007068050 @default.
- W2378121013 cites W2014276640 @default.
- W2378121013 cites W2020232702 @default.
- W2378121013 cites W2029925495 @default.
- W2378121013 cites W2030374085 @default.
- W2378121013 cites W2037960630 @default.
- W2378121013 cites W2038411763 @default.
- W2378121013 cites W2047051629 @default.
- W2378121013 cites W2066969745 @default.
- W2378121013 cites W2073805144 @default.
- W2378121013 cites W2079266504 @default.
- W2378121013 cites W2106905228 @default.
- W2378121013 cites W2115837867 @default.
- W2378121013 cites W2118262619 @default.
- W2378121013 cites W2136784652 @default.
- W2378121013 cites W2169868707 @default.
- W2378121013 cites W4249870550 @default.
- W2378121013 doi "https://doi.org/10.1061/(asce)ir.1943-4774.0001059" @default.
- W2378121013 hasPublicationYear "2016" @default.
- W2378121013 type Work @default.
- W2378121013 sameAs 2378121013 @default.
- W2378121013 citedByCount "16" @default.
- W2378121013 countsByYear W23781210132018 @default.
- W2378121013 countsByYear W23781210132019 @default.
- W2378121013 countsByYear W23781210132020 @default.
- W2378121013 countsByYear W23781210132021 @default.
- W2378121013 countsByYear W23781210132022 @default.
- W2378121013 countsByYear W23781210132023 @default.
- W2378121013 crossrefType "journal-article" @default.
- W2378121013 hasAuthorship W2378121013A5001139908 @default.
- W2378121013 hasAuthorship W2378121013A5007760130 @default.
- W2378121013 hasAuthorship W2378121013A5022491999 @default.
- W2378121013 hasAuthorship W2378121013A5063297680 @default.
- W2378121013 hasAuthorship W2378121013A5077536887 @default.
- W2378121013 hasConcept C109718341 @default.
- W2378121013 hasConcept C11413529 @default.
- W2378121013 hasConcept C126255220 @default.
- W2378121013 hasConcept C126980161 @default.
- W2378121013 hasConcept C28767586 @default.
- W2378121013 hasConcept C33923547 @default.
- W2378121013 hasConcept C40128228 @default.
- W2378121013 hasConcept C41008148 @default.
- W2378121013 hasConcept C4935549 @default.
- W2378121013 hasConcept C73684929 @default.
- W2378121013 hasConcept C85617194 @default.
- W2378121013 hasConcept C8880873 @default.
- W2378121013 hasConceptScore W2378121013C109718341 @default.
- W2378121013 hasConceptScore W2378121013C11413529 @default.
- W2378121013 hasConceptScore W2378121013C126255220 @default.
- W2378121013 hasConceptScore W2378121013C126980161 @default.
- W2378121013 hasConceptScore W2378121013C28767586 @default.
- W2378121013 hasConceptScore W2378121013C33923547 @default.
- W2378121013 hasConceptScore W2378121013C40128228 @default.
- W2378121013 hasConceptScore W2378121013C41008148 @default.
- W2378121013 hasConceptScore W2378121013C4935549 @default.
- W2378121013 hasConceptScore W2378121013C73684929 @default.
- W2378121013 hasConceptScore W2378121013C85617194 @default.
- W2378121013 hasConceptScore W2378121013C8880873 @default.
- W2378121013 hasIssue "10" @default.
- W2378121013 hasLocation W23781210131 @default.
- W2378121013 hasOpenAccess W2378121013 @default.
- W2378121013 hasPrimaryLocation W23781210131 @default.
- W2378121013 hasRelatedWork W1562595531 @default.
- W2378121013 hasRelatedWork W1939200287 @default.
- W2378121013 hasRelatedWork W1995041656 @default.
- W2378121013 hasRelatedWork W2061413861 @default.
- W2378121013 hasRelatedWork W2162773679 @default.
- W2378121013 hasRelatedWork W2885181825 @default.
- W2378121013 hasRelatedWork W3082258531 @default.
- W2378121013 hasRelatedWork W3157253652 @default.
- W2378121013 hasRelatedWork W4382044826 @default.
- W2378121013 hasRelatedWork W2145506445 @default.
- W2378121013 hasVolume "142" @default.
- W2378121013 isParatext "false" @default.
- W2378121013 isRetracted "false" @default.
- W2378121013 magId "2378121013" @default.
- W2378121013 workType "article" @default.