Matches in SemOpenAlex for { <https://semopenalex.org/work/W2379133119> ?p ?o ?g. }
- W2379133119 endingPage "1901" @default.
- W2379133119 startingPage "1889" @default.
- W2379133119 abstract "The memristor has been extensively studied in electrical engineering and biological sciences as a means to compactly implement the synaptic function in neural networks. The cellular neural network (CNN) is one of the most implementable artificial neural network models and capable of massively parallel analog processing. In this paper, a novel memristive multilayer CNN (Mm-CNN) model is presented along with its performance analysis and applications. In this new CNN design, the memristor crossbar circuit acts as the synapse, which realizes one signed synaptic weight with a pair of memristors and performs the synaptic weighting compactly and linearly. Moreover, the complex weighted summation is executed in an efficient way with a proper design of Mm-CNN cell circuits. The proposed Mm-CNN has several merits, such as compactness, nonvolatility, versatility, and programmability of synaptic weights. Its performance in several image processing applications is illustrated through simulations." @default.
- W2379133119 created "2016-06-24" @default.
- W2379133119 creator A5035048973 @default.
- W2379133119 creator A5049264813 @default.
- W2379133119 creator A5082124101 @default.
- W2379133119 creator A5087454088 @default.
- W2379133119 date "2017-08-01" @default.
- W2379133119 modified "2023-10-17" @default.
- W2379133119 title "A Memristive Multilayer Cellular Neural Network With Applications to Image Processing" @default.
- W2379133119 cites W1570173134 @default.
- W2379133119 cites W1809705255 @default.
- W2379133119 cites W1970974872 @default.
- W2379133119 cites W1990306796 @default.
- W2379133119 cites W1993586363 @default.
- W2379133119 cites W1994705072 @default.
- W2379133119 cites W1995314879 @default.
- W2379133119 cites W2015088745 @default.
- W2379133119 cites W2020376324 @default.
- W2379133119 cites W2021383442 @default.
- W2379133119 cites W2026788380 @default.
- W2379133119 cites W2027895023 @default.
- W2379133119 cites W2038923131 @default.
- W2379133119 cites W2052793545 @default.
- W2379133119 cites W2056717940 @default.
- W2379133119 cites W2063572467 @default.
- W2379133119 cites W2072497408 @default.
- W2379133119 cites W2082110752 @default.
- W2379133119 cites W2103531629 @default.
- W2379133119 cites W2112181056 @default.
- W2379133119 cites W2129256871 @default.
- W2379133119 cites W2137388616 @default.
- W2379133119 cites W2143483829 @default.
- W2379133119 cites W2148514738 @default.
- W2379133119 cites W2149441930 @default.
- W2379133119 cites W2151162785 @default.
- W2379133119 cites W2151810867 @default.
- W2379133119 cites W2155954834 @default.
- W2379133119 cites W2158076333 @default.
- W2379133119 cites W2160121923 @default.
- W2379133119 cites W2162651880 @default.
- W2379133119 cites W2170403772 @default.
- W2379133119 cites W2175546284 @default.
- W2379133119 cites W2259628723 @default.
- W2379133119 cites W3099743262 @default.
- W2379133119 doi "https://doi.org/10.1109/tnnls.2016.2552640" @default.
- W2379133119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27187973" @default.
- W2379133119 hasPublicationYear "2017" @default.
- W2379133119 type Work @default.
- W2379133119 sameAs 2379133119 @default.
- W2379133119 citedByCount "110" @default.
- W2379133119 countsByYear W23791331192017 @default.
- W2379133119 countsByYear W23791331192018 @default.
- W2379133119 countsByYear W23791331192019 @default.
- W2379133119 countsByYear W23791331192020 @default.
- W2379133119 countsByYear W23791331192021 @default.
- W2379133119 countsByYear W23791331192022 @default.
- W2379133119 countsByYear W23791331192023 @default.
- W2379133119 crossrefType "journal-article" @default.
- W2379133119 hasAuthorship W2379133119A5035048973 @default.
- W2379133119 hasAuthorship W2379133119A5049264813 @default.
- W2379133119 hasAuthorship W2379133119A5082124101 @default.
- W2379133119 hasAuthorship W2379133119A5087454088 @default.
- W2379133119 hasConcept C115961682 @default.
- W2379133119 hasConcept C118524514 @default.
- W2379133119 hasConcept C119599485 @default.
- W2379133119 hasConcept C126838900 @default.
- W2379133119 hasConcept C127413603 @default.
- W2379133119 hasConcept C127445978 @default.
- W2379133119 hasConcept C14580979 @default.
- W2379133119 hasConcept C149635348 @default.
- W2379133119 hasConcept C150072547 @default.
- W2379133119 hasConcept C154945302 @default.
- W2379133119 hasConcept C169760540 @default.
- W2379133119 hasConcept C173608175 @default.
- W2379133119 hasConcept C175202392 @default.
- W2379133119 hasConcept C177973122 @default.
- W2379133119 hasConcept C183115368 @default.
- W2379133119 hasConcept C184720557 @default.
- W2379133119 hasConcept C190475519 @default.
- W2379133119 hasConcept C24326235 @default.
- W2379133119 hasConcept C29984679 @default.
- W2379133119 hasConcept C33766855 @default.
- W2379133119 hasConcept C41008148 @default.
- W2379133119 hasConcept C50644808 @default.
- W2379133119 hasConcept C66949984 @default.
- W2379133119 hasConcept C71924100 @default.
- W2379133119 hasConcept C76155785 @default.
- W2379133119 hasConcept C812465 @default.
- W2379133119 hasConcept C81363708 @default.
- W2379133119 hasConcept C86803240 @default.
- W2379133119 hasConcept C9417928 @default.
- W2379133119 hasConceptScore W2379133119C115961682 @default.
- W2379133119 hasConceptScore W2379133119C118524514 @default.
- W2379133119 hasConceptScore W2379133119C119599485 @default.
- W2379133119 hasConceptScore W2379133119C126838900 @default.
- W2379133119 hasConceptScore W2379133119C127413603 @default.
- W2379133119 hasConceptScore W2379133119C127445978 @default.
- W2379133119 hasConceptScore W2379133119C14580979 @default.