Matches in SemOpenAlex for { <https://semopenalex.org/work/W2380220194> ?p ?o ?g. }
- W2380220194 endingPage "5337" @default.
- W2380220194 startingPage "5328" @default.
- W2380220194 abstract "Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude, phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation. Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research. SIGNIFICANCE STATEMENT Oscillatory activity is widely recognized as a core mechanism for information transmission within and between brain circuits. Noninvasive stimulation methods can shape this activity, something that is increasingly capitalized upon in basic research and clinical practice. Here, we provide computational insights on the mechanistic bases for such effects. Our results show that rhythmic stimulation forms the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. In addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network, particularly in regimes of high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research." @default.
- W2380220194 created "2016-06-24" @default.
- W2380220194 creator A5029520140 @default.
- W2380220194 creator A5053824274 @default.
- W2380220194 creator A5077638875 @default.
- W2380220194 creator A5085273431 @default.
- W2380220194 creator A5087111784 @default.
- W2380220194 date "2016-05-11" @default.
- W2380220194 modified "2023-10-17" @default.
- W2380220194 title "Shaping Intrinsic Neural Oscillations with Periodic Stimulation" @default.
- W2380220194 cites W1168914164 @default.
- W2380220194 cites W1482365097 @default.
- W2380220194 cites W1486735428 @default.
- W2380220194 cites W1501360999 @default.
- W2380220194 cites W1582051163 @default.
- W2380220194 cites W1603307924 @default.
- W2380220194 cites W1955021700 @default.
- W2380220194 cites W1963967172 @default.
- W2380220194 cites W1979330140 @default.
- W2380220194 cites W1990552811 @default.
- W2380220194 cites W1993042337 @default.
- W2380220194 cites W1993435683 @default.
- W2380220194 cites W1997032468 @default.
- W2380220194 cites W2000225665 @default.
- W2380220194 cites W2001000576 @default.
- W2380220194 cites W2008263877 @default.
- W2380220194 cites W2020285738 @default.
- W2380220194 cites W2020287399 @default.
- W2380220194 cites W2020300751 @default.
- W2380220194 cites W2024416090 @default.
- W2380220194 cites W2026864246 @default.
- W2380220194 cites W2029374903 @default.
- W2380220194 cites W2032590826 @default.
- W2380220194 cites W2040149530 @default.
- W2380220194 cites W2044971011 @default.
- W2380220194 cites W2055264244 @default.
- W2380220194 cites W2067393309 @default.
- W2380220194 cites W2076208297 @default.
- W2380220194 cites W2082147754 @default.
- W2380220194 cites W2086485092 @default.
- W2380220194 cites W2094850439 @default.
- W2380220194 cites W2095265457 @default.
- W2380220194 cites W2098330912 @default.
- W2380220194 cites W2107560053 @default.
- W2380220194 cites W2109141665 @default.
- W2380220194 cites W2112332687 @default.
- W2380220194 cites W2124818028 @default.
- W2380220194 cites W2128812537 @default.
- W2380220194 cites W2130362146 @default.
- W2380220194 cites W2131423842 @default.
- W2380220194 cites W2134432491 @default.
- W2380220194 cites W2140398789 @default.
- W2380220194 cites W2140858956 @default.
- W2380220194 cites W2149369494 @default.
- W2380220194 cites W2158347435 @default.
- W2380220194 cites W2160534651 @default.
- W2380220194 cites W2162013747 @default.
- W2380220194 cites W2167030473 @default.
- W2380220194 cites W2169619863 @default.
- W2380220194 cites W2200681203 @default.
- W2380220194 cites W2267492581 @default.
- W2380220194 cites W2272281101 @default.
- W2380220194 cites W2317443075 @default.
- W2380220194 cites W2329935490 @default.
- W2380220194 cites W3105364308 @default.
- W2380220194 cites W823634764 @default.
- W2380220194 doi "https://doi.org/10.1523/jneurosci.0236-16.2016" @default.
- W2380220194 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6601804" @default.
- W2380220194 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27170129" @default.
- W2380220194 hasPublicationYear "2016" @default.
- W2380220194 type Work @default.
- W2380220194 sameAs 2380220194 @default.
- W2380220194 citedByCount "115" @default.
- W2380220194 countsByYear W23802201942016 @default.
- W2380220194 countsByYear W23802201942017 @default.
- W2380220194 countsByYear W23802201942018 @default.
- W2380220194 countsByYear W23802201942019 @default.
- W2380220194 countsByYear W23802201942020 @default.
- W2380220194 countsByYear W23802201942021 @default.
- W2380220194 countsByYear W23802201942022 @default.
- W2380220194 countsByYear W23802201942023 @default.
- W2380220194 crossrefType "journal-article" @default.
- W2380220194 hasAuthorship W2380220194A5029520140 @default.
- W2380220194 hasAuthorship W2380220194A5053824274 @default.
- W2380220194 hasAuthorship W2380220194A5077638875 @default.
- W2380220194 hasAuthorship W2380220194A5085273431 @default.
- W2380220194 hasAuthorship W2380220194A5087111784 @default.
- W2380220194 hasBestOaLocation W23802201941 @default.
- W2380220194 hasConcept C118403218 @default.
- W2380220194 hasConcept C120843803 @default.
- W2380220194 hasConcept C121332964 @default.
- W2380220194 hasConcept C135343436 @default.
- W2380220194 hasConcept C139992725 @default.
- W2380220194 hasConcept C15744967 @default.
- W2380220194 hasConcept C169760540 @default.
- W2380220194 hasConcept C24890656 @default.
- W2380220194 hasConcept C24998067 @default.
- W2380220194 hasConcept C2778581513 @default.