Matches in SemOpenAlex for { <https://semopenalex.org/work/W2383922675> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2383922675 abstract "Various spatial interpolation methods are widely applied to climate map production.The quality of climate spatial interpolation depends on the spatial variation of climate factors,the spatial distribution of climate stations,and the interpolation method.For examining the relationships between station distributions,interpolation methods and interpolation quality,599 climate stations in Texas,US with 30-year precipitation records are collected and 27 station samples are designed by regular or random sampling.The spatial patterns of Annual,January and August precipitation data are investigated using exploring spatial analysis such as spatial statistics,spatial autocorrelation testing,and semivariogram modeling.Five methods,i.e.,Kriging,IDW,local polynomial,regularized spline and thin plate spline,are used in the spatial interpolation of Annual,January and August precipitation data for all the station samples.The interpolation results,in terms of cross-validation errors,known-point check errors,and linear regression of the known values versus predicted values,are compared and discussed.Four findings are generalized from this case study.First,precipitation data usually have patterns such as obvious spatial trend,high-level spatial autocorrelation and stable semivariogram model.Nevertheless,the spatial patterns may vary by sample stations and seasonal changes.Considering these spatial characteristics,the exploring spatial data analysis is necessary and essential for climate spatial interpolation.Second,increasing the sample size of climate stations,the interpolation accuracy will be improved.But at a reasonable number of stations,increasing the sample size,the interpolation accuracy will not be improved obviously.Third,when the observation samples are scarce,different methods usually give very different interpolation results.When the samples are relatively rich,general methods tend to create similar results.Fourth,considering the intrinsic limitations of the general spatial interpolation methods,the authors suggest to explore the local relationships between climate factors and geographic variations,and to develop a knowledge-based interpolation method by introducing geographic variables and local regression models.The weighted linear regression of precipitation versus elevation for northwest Texas and the geographic weighted regression for entire Texas have shown the potentials of such new approaches.It is also argued that exploring spatial data analysis and knowledge-based spatial interpolation are critical for high-quality climate data interpolation." @default.
- W2383922675 created "2016-06-24" @default.
- W2383922675 creator A5083590060 @default.
- W2383922675 date "2008-01-01" @default.
- W2383922675 modified "2023-09-27" @default.
- W2383922675 title "Spatial exploration and interpolation of the surface precipitation data" @default.
- W2383922675 hasPublicationYear "2008" @default.
- W2383922675 type Work @default.
- W2383922675 sameAs 2383922675 @default.
- W2383922675 citedByCount "1" @default.
- W2383922675 countsByYear W23839226752019 @default.
- W2383922675 crossrefType "journal-article" @default.
- W2383922675 hasAuthorship W2383922675A5083590060 @default.
- W2383922675 hasConcept C104114177 @default.
- W2383922675 hasConcept C105795698 @default.
- W2383922675 hasConcept C137800194 @default.
- W2383922675 hasConcept C138695830 @default.
- W2383922675 hasConcept C153294291 @default.
- W2383922675 hasConcept C154881674 @default.
- W2383922675 hasConcept C154945302 @default.
- W2383922675 hasConcept C159620131 @default.
- W2383922675 hasConcept C203332170 @default.
- W2383922675 hasConcept C205203396 @default.
- W2383922675 hasConcept C205649164 @default.
- W2383922675 hasConcept C33923547 @default.
- W2383922675 hasConcept C39432304 @default.
- W2383922675 hasConcept C41008148 @default.
- W2383922675 hasConcept C81692654 @default.
- W2383922675 hasConcept C94747663 @default.
- W2383922675 hasConceptScore W2383922675C104114177 @default.
- W2383922675 hasConceptScore W2383922675C105795698 @default.
- W2383922675 hasConceptScore W2383922675C137800194 @default.
- W2383922675 hasConceptScore W2383922675C138695830 @default.
- W2383922675 hasConceptScore W2383922675C153294291 @default.
- W2383922675 hasConceptScore W2383922675C154881674 @default.
- W2383922675 hasConceptScore W2383922675C154945302 @default.
- W2383922675 hasConceptScore W2383922675C159620131 @default.
- W2383922675 hasConceptScore W2383922675C203332170 @default.
- W2383922675 hasConceptScore W2383922675C205203396 @default.
- W2383922675 hasConceptScore W2383922675C205649164 @default.
- W2383922675 hasConceptScore W2383922675C33923547 @default.
- W2383922675 hasConceptScore W2383922675C39432304 @default.
- W2383922675 hasConceptScore W2383922675C41008148 @default.
- W2383922675 hasConceptScore W2383922675C81692654 @default.
- W2383922675 hasConceptScore W2383922675C94747663 @default.
- W2383922675 hasLocation W23839226751 @default.
- W2383922675 hasOpenAccess W2383922675 @default.
- W2383922675 hasPrimaryLocation W23839226751 @default.
- W2383922675 hasRelatedWork W1981981852 @default.
- W2383922675 hasRelatedWork W1983384702 @default.
- W2383922675 hasRelatedWork W1986149296 @default.
- W2383922675 hasRelatedWork W2030871002 @default.
- W2383922675 hasRelatedWork W2037609456 @default.
- W2383922675 hasRelatedWork W2052520399 @default.
- W2383922675 hasRelatedWork W2061153840 @default.
- W2383922675 hasRelatedWork W2103715073 @default.
- W2383922675 hasRelatedWork W2113671441 @default.
- W2383922675 hasRelatedWork W2144051257 @default.
- W2383922675 hasRelatedWork W2151260918 @default.
- W2383922675 hasRelatedWork W2257948505 @default.
- W2383922675 hasRelatedWork W2376776803 @default.
- W2383922675 hasRelatedWork W2461571180 @default.
- W2383922675 hasRelatedWork W2592115114 @default.
- W2383922675 hasRelatedWork W2610787157 @default.
- W2383922675 hasRelatedWork W3022780322 @default.
- W2383922675 hasRelatedWork W3127525226 @default.
- W2383922675 hasRelatedWork W21448994 @default.
- W2383922675 hasRelatedWork W2933452843 @default.
- W2383922675 isParatext "false" @default.
- W2383922675 isRetracted "false" @default.
- W2383922675 magId "2383922675" @default.
- W2383922675 workType "article" @default.