Matches in SemOpenAlex for { <https://semopenalex.org/work/W2384697367> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2384697367 abstract "This paper deals with the problem of lattice matrices. Let L be a distributive lattice with the least element 0. x,y∈L,define x■y as follows: if x≤y,then x■y=0;otherwise,x■y=x. For two lattice matrices (Rij)n×n and (Sij)n×n,the composition of ■ is defined as (Rij■Sij)n×n. For a nilpotent matrix R,we prove that (R/R)+=R+;for an irreflexive transitive matrix R,we prove that R/R≤S≤R is equivalent to R/R=S/R,where R/S=R■(R⊙S),⊙ is the sup-inf composite operator and R+ is the transitive closure of R." @default.
- W2384697367 created "2016-06-24" @default.
- W2384697367 creator A5033285260 @default.
- W2384697367 date "2009-01-01" @default.
- W2384697367 modified "2023-09-23" @default.
- W2384697367 title "Properties of Transitive Matrices over a Lattice" @default.
- W2384697367 hasPublicationYear "2009" @default.
- W2384697367 type Work @default.
- W2384697367 sameAs 2384697367 @default.
- W2384697367 citedByCount "0" @default.
- W2384697367 crossrefType "journal-article" @default.
- W2384697367 hasAuthorship W2384697367A5033285260 @default.
- W2384697367 hasConcept C114614502 @default.
- W2384697367 hasConcept C118615104 @default.
- W2384697367 hasConcept C121332964 @default.
- W2384697367 hasConcept C128896722 @default.
- W2384697367 hasConcept C191399111 @default.
- W2384697367 hasConcept C24890656 @default.
- W2384697367 hasConcept C2781204021 @default.
- W2384697367 hasConcept C33923547 @default.
- W2384697367 hasConceptScore W2384697367C114614502 @default.
- W2384697367 hasConceptScore W2384697367C118615104 @default.
- W2384697367 hasConceptScore W2384697367C121332964 @default.
- W2384697367 hasConceptScore W2384697367C128896722 @default.
- W2384697367 hasConceptScore W2384697367C191399111 @default.
- W2384697367 hasConceptScore W2384697367C24890656 @default.
- W2384697367 hasConceptScore W2384697367C2781204021 @default.
- W2384697367 hasConceptScore W2384697367C33923547 @default.
- W2384697367 hasLocation W23846973671 @default.
- W2384697367 hasOpenAccess W2384697367 @default.
- W2384697367 hasPrimaryLocation W23846973671 @default.
- W2384697367 hasRelatedWork W1989021638 @default.
- W2384697367 hasRelatedWork W2020317525 @default.
- W2384697367 hasRelatedWork W2036199060 @default.
- W2384697367 hasRelatedWork W2049124267 @default.
- W2384697367 hasRelatedWork W2057607647 @default.
- W2384697367 hasRelatedWork W2067312420 @default.
- W2384697367 hasRelatedWork W2070255233 @default.
- W2384697367 hasRelatedWork W2086982719 @default.
- W2384697367 hasRelatedWork W2089172595 @default.
- W2384697367 hasRelatedWork W2122988833 @default.
- W2384697367 hasRelatedWork W2166842546 @default.
- W2384697367 hasRelatedWork W2283101782 @default.
- W2384697367 hasRelatedWork W2317397878 @default.
- W2384697367 hasRelatedWork W2361598574 @default.
- W2384697367 hasRelatedWork W2364177275 @default.
- W2384697367 hasRelatedWork W2368963203 @default.
- W2384697367 hasRelatedWork W2380669073 @default.
- W2384697367 hasRelatedWork W2391124405 @default.
- W2384697367 hasRelatedWork W2895853178 @default.
- W2384697367 hasRelatedWork W2971626280 @default.
- W2384697367 isParatext "false" @default.
- W2384697367 isRetracted "false" @default.
- W2384697367 magId "2384697367" @default.
- W2384697367 workType "article" @default.