Matches in SemOpenAlex for { <https://semopenalex.org/work/W2386390780> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2386390780 abstract "High spatial resolution remote sensing images represent the surface of the earth in detail.As spatial resolution increases,spectral variability within the land cover units becomes complex in high spatial resolution remote sensing images,which makes traditional remote sensing image-processing methods on pixel basis such as ISODATA not suitable.Image segmentation that takes spatial information of image into account provides an alternative solution to this problem,and becomes a hot spot in the processing of high spatial resolution remote sensing image nowadays.Temporal Independent Pulse-Coupled Neural Network(TI-PCNN for short) is an improved PCNN,which is a useful biologically inspired image-processing algorithm. It has two properties including a neuron which has the ability to capture neighboring neurons in similar states and regions of neurons which are not connecting with each other,no matter in which states they are,have different pulsing time.These properties of the TI-PCNN ease difficulties of optimal parameters selection process commonly encountered in the usage of traditional PCNN,and make it a useful new tool in non-remote sensing image segmentation.However,due to its heavy computational cost and over-segmentation of objects within the range of low intensity,the original TI-PCNN method is ineffective at segmenting high spatial resolution remote sensing image.By taking account of spatial and spectral characteristics of high spatial resolution remote sensing image,this paper studies the function of parameters in the TI-PCNN and proposes a segmentation method based on the TI-PCNN.A subset of aerial images with spatial resolution of 0.3m is used for experiment and analysis.Segmented result is compared with that of current TI-PCNN method and ISODATA.Result shows that our method can reduce variability within the land cover units to a large extent while maintaining geometric structure in the image.It provides a great potential in high spatial resolution remote sensing image segmentation." @default.
- W2386390780 created "2016-06-24" @default.
- W2386390780 creator A5035835836 @default.
- W2386390780 date "2008-01-01" @default.
- W2386390780 modified "2023-09-23" @default.
- W2386390780 title "High Spatial Resolution Remote Sensing Image Segmentation Based on Temporal Independent PCNN" @default.
- W2386390780 hasPublicationYear "2008" @default.
- W2386390780 type Work @default.
- W2386390780 sameAs 2386390780 @default.
- W2386390780 citedByCount "0" @default.
- W2386390780 crossrefType "journal-article" @default.
- W2386390780 hasAuthorship W2386390780A5035835836 @default.
- W2386390780 hasConcept C104541649 @default.
- W2386390780 hasConcept C115961682 @default.
- W2386390780 hasConcept C124504099 @default.
- W2386390780 hasConcept C127313418 @default.
- W2386390780 hasConcept C153180895 @default.
- W2386390780 hasConcept C154945302 @default.
- W2386390780 hasConcept C159078339 @default.
- W2386390780 hasConcept C159620131 @default.
- W2386390780 hasConcept C160633673 @default.
- W2386390780 hasConcept C173163844 @default.
- W2386390780 hasConcept C183365957 @default.
- W2386390780 hasConcept C205372480 @default.
- W2386390780 hasConcept C31972630 @default.
- W2386390780 hasConcept C41008148 @default.
- W2386390780 hasConcept C50644808 @default.
- W2386390780 hasConcept C62649853 @default.
- W2386390780 hasConcept C89600930 @default.
- W2386390780 hasConcept C9417928 @default.
- W2386390780 hasConceptScore W2386390780C104541649 @default.
- W2386390780 hasConceptScore W2386390780C115961682 @default.
- W2386390780 hasConceptScore W2386390780C124504099 @default.
- W2386390780 hasConceptScore W2386390780C127313418 @default.
- W2386390780 hasConceptScore W2386390780C153180895 @default.
- W2386390780 hasConceptScore W2386390780C154945302 @default.
- W2386390780 hasConceptScore W2386390780C159078339 @default.
- W2386390780 hasConceptScore W2386390780C159620131 @default.
- W2386390780 hasConceptScore W2386390780C160633673 @default.
- W2386390780 hasConceptScore W2386390780C173163844 @default.
- W2386390780 hasConceptScore W2386390780C183365957 @default.
- W2386390780 hasConceptScore W2386390780C205372480 @default.
- W2386390780 hasConceptScore W2386390780C31972630 @default.
- W2386390780 hasConceptScore W2386390780C41008148 @default.
- W2386390780 hasConceptScore W2386390780C50644808 @default.
- W2386390780 hasConceptScore W2386390780C62649853 @default.
- W2386390780 hasConceptScore W2386390780C89600930 @default.
- W2386390780 hasConceptScore W2386390780C9417928 @default.
- W2386390780 hasOpenAccess W2386390780 @default.
- W2386390780 hasRelatedWork W1965155080 @default.
- W2386390780 hasRelatedWork W1983283528 @default.
- W2386390780 hasRelatedWork W2012697209 @default.
- W2386390780 hasRelatedWork W2029279658 @default.
- W2386390780 hasRelatedWork W2044280977 @default.
- W2386390780 hasRelatedWork W2088205960 @default.
- W2386390780 hasRelatedWork W2150375592 @default.
- W2386390780 hasRelatedWork W2168277693 @default.
- W2386390780 hasRelatedWork W2169458405 @default.
- W2386390780 hasRelatedWork W2351984244 @default.
- W2386390780 hasRelatedWork W2360223108 @default.
- W2386390780 hasRelatedWork W2362832917 @default.
- W2386390780 hasRelatedWork W2753411449 @default.
- W2386390780 hasRelatedWork W2803701500 @default.
- W2386390780 hasRelatedWork W2901390297 @default.
- W2386390780 hasRelatedWork W3039436893 @default.
- W2386390780 hasRelatedWork W3085788754 @default.
- W2386390780 hasRelatedWork W3199326278 @default.
- W2386390780 hasRelatedWork W3001885674 @default.
- W2386390780 hasRelatedWork W3125542129 @default.
- W2386390780 isParatext "false" @default.
- W2386390780 isRetracted "false" @default.
- W2386390780 magId "2386390780" @default.
- W2386390780 workType "article" @default.