Matches in SemOpenAlex for { <https://semopenalex.org/work/W2391561377> ?p ?o ?g. }
- W2391561377 abstract "Recognizing facial expression in a wild setting has remained a challenging task in computer vision. The World Wide Web is a good source of facial images which most of them are captured in uncontrolled conditions. In fact, the Internet is a Word Wild Web of facial images with expressions. This paper presents the results of a new study on collecting, annotating, and analyzing wild facial expressions from the web. Three search engines were queried using 1250 emotion related keywords in six different languages and the retrieved images were mapped by two annotators to six basic expressions and neutral. Deep neural networks and noise modeling were used in three different training scenarios to find how accurately facial expressions can be recognized when trained on noisy images collected from the web using query terms (e.g. happy face, laughing man, etc)? The results of our experiments show that deep neural networks can recognize wild facial expressions with an accuracy of 82.12%." @default.
- W2391561377 created "2016-06-24" @default.
- W2391561377 creator A5011647319 @default.
- W2391561377 creator A5033395928 @default.
- W2391561377 creator A5036765903 @default.
- W2391561377 creator A5041948053 @default.
- W2391561377 creator A5059456278 @default.
- W2391561377 creator A5069181389 @default.
- W2391561377 date "2016-06-01" @default.
- W2391561377 modified "2023-09-29" @default.
- W2391561377 title "Facial Expression Recognition from World Wild Web" @default.
- W2391561377 cites W1580172038 @default.
- W2391561377 cites W1998294030 @default.
- W2391561377 cites W2006902452 @default.
- W2391561377 cites W2008933718 @default.
- W2391561377 cites W2013776246 @default.
- W2391561377 cites W2031402837 @default.
- W2391561377 cites W2045472600 @default.
- W2391561377 cites W2058961190 @default.
- W2391561377 cites W2072728177 @default.
- W2391561377 cites W2083021723 @default.
- W2391561377 cites W2106115875 @default.
- W2391561377 cites W2108598243 @default.
- W2391561377 cites W2113325037 @default.
- W2391561377 cites W2115930855 @default.
- W2391561377 cites W2143875529 @default.
- W2391561377 cites W2145287260 @default.
- W2391561377 cites W2145310492 @default.
- W2391561377 cites W2153597356 @default.
- W2391561377 cites W2161381512 @default.
- W2391561377 cites W2161634108 @default.
- W2391561377 cites W2165731615 @default.
- W2391561377 cites W2223246223 @default.
- W2391561377 cites W2244142460 @default.
- W2391561377 cites W2246249023 @default.
- W2391561377 cites W2407712691 @default.
- W2391561377 cites W2532594835 @default.
- W2391561377 cites W2744909235 @default.
- W2391561377 cites W2912990735 @default.
- W2391561377 cites W3101049705 @default.
- W2391561377 doi "https://doi.org/10.1109/cvprw.2016.188" @default.
- W2391561377 hasPublicationYear "2016" @default.
- W2391561377 type Work @default.
- W2391561377 sameAs 2391561377 @default.
- W2391561377 citedByCount "61" @default.
- W2391561377 countsByYear W23915613772016 @default.
- W2391561377 countsByYear W23915613772017 @default.
- W2391561377 countsByYear W23915613772018 @default.
- W2391561377 countsByYear W23915613772019 @default.
- W2391561377 countsByYear W23915613772020 @default.
- W2391561377 countsByYear W23915613772021 @default.
- W2391561377 countsByYear W23915613772022 @default.
- W2391561377 countsByYear W23915613772023 @default.
- W2391561377 crossrefType "proceedings-article" @default.
- W2391561377 hasAuthorship W2391561377A5011647319 @default.
- W2391561377 hasAuthorship W2391561377A5033395928 @default.
- W2391561377 hasAuthorship W2391561377A5036765903 @default.
- W2391561377 hasAuthorship W2391561377A5041948053 @default.
- W2391561377 hasAuthorship W2391561377A5059456278 @default.
- W2391561377 hasAuthorship W2391561377A5069181389 @default.
- W2391561377 hasBestOaLocation W23915613772 @default.
- W2391561377 hasConcept C108583219 @default.
- W2391561377 hasConcept C110875604 @default.
- W2391561377 hasConcept C115961682 @default.
- W2391561377 hasConcept C118643609 @default.
- W2391561377 hasConcept C136764020 @default.
- W2391561377 hasConcept C144024400 @default.
- W2391561377 hasConcept C153180895 @default.
- W2391561377 hasConcept C154945302 @default.
- W2391561377 hasConcept C162324750 @default.
- W2391561377 hasConcept C187736073 @default.
- W2391561377 hasConcept C195704467 @default.
- W2391561377 hasConcept C199360897 @default.
- W2391561377 hasConcept C204321447 @default.
- W2391561377 hasConcept C2779304628 @default.
- W2391561377 hasConcept C2780451532 @default.
- W2391561377 hasConcept C28490314 @default.
- W2391561377 hasConcept C2984842247 @default.
- W2391561377 hasConcept C2987714656 @default.
- W2391561377 hasConcept C31510193 @default.
- W2391561377 hasConcept C31972630 @default.
- W2391561377 hasConcept C36289849 @default.
- W2391561377 hasConcept C41008148 @default.
- W2391561377 hasConcept C50644808 @default.
- W2391561377 hasConcept C90559484 @default.
- W2391561377 hasConcept C99498987 @default.
- W2391561377 hasConceptScore W2391561377C108583219 @default.
- W2391561377 hasConceptScore W2391561377C110875604 @default.
- W2391561377 hasConceptScore W2391561377C115961682 @default.
- W2391561377 hasConceptScore W2391561377C118643609 @default.
- W2391561377 hasConceptScore W2391561377C136764020 @default.
- W2391561377 hasConceptScore W2391561377C144024400 @default.
- W2391561377 hasConceptScore W2391561377C153180895 @default.
- W2391561377 hasConceptScore W2391561377C154945302 @default.
- W2391561377 hasConceptScore W2391561377C162324750 @default.
- W2391561377 hasConceptScore W2391561377C187736073 @default.
- W2391561377 hasConceptScore W2391561377C195704467 @default.
- W2391561377 hasConceptScore W2391561377C199360897 @default.
- W2391561377 hasConceptScore W2391561377C204321447 @default.
- W2391561377 hasConceptScore W2391561377C2779304628 @default.