Matches in SemOpenAlex for { <https://semopenalex.org/work/W2391981731> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2391981731 abstract "One of the key issues of land use/cover change detection using remote sensing images is the threshold determination.This paper introduces the histogram approximation method based on Expectation Maximization(EM) algorithm and Bayes Information Criterion(BIC) into unsupervised change detection.EM algorithm is an iterative algorithm that has many advantages in estimating the statistical values.BIC is always used for evaluating a statistical model on the aspects of accuracy and complexity.Difference is acquired by applying the change vector analysis(CVA) technique,which can magnify the difference between the two-temporal images.The probability distribution function(PDF) of its histogram can be modeled as a mixture of M Gaussian distributions.Different values of M will get different models.The best one will make the value of BIC minimum.According to this criterion,the statistical values of the mixture Gaussian distributions can be estimated using the EM algorithm and BIC.Then the threshold of the change detection will be obtained by finding the intersection point of two neighbor Gaussian distributions.M Gaussian distributions will gain M points that are the M thresholds.M is regarded as the number of the changed types.The estimated values including means and variations and the prior distributions of every Gaussian distribution have definite physical meanings.The means indicate the values of images of those changed types based on which difference image can be classified quickly.The variations illustrate the difference in one changed types,and the percentage of every change types can be given by the prior distributions of every Gaussian distribution.The traditional methods of change detection by remote sensing based on EM algorithm is often assuming the difference image containing two types of pixels.Which are changed pixels and unchanged pixels.But when there are more than one changed types and the difference images' histogram becomes complex,this method is proved not accurate.To compare these two methods and validate this method,this paper chose the area around the Miyun Reservoir as the experiment area.There are more than one types changed including water,bare land and vegetation and so on,so this area is representative for change detection study.The experiment data is 2001 TM image and 2004 ETM+ image.The difference image's histogram is modeled by 4 Gaussian distribution,according to the models the difference image is classified 4 types.Then the difference image is processed by traditional method of change detection based on EM algorithm.The entropy is introduced to evaluate the two experimental results,which is usually used to evaluate the uncertainty of one pixel belonging to one classification.Its advantage is that it can make the pixels' uncertainty visible in the image.Results show that the histogram approximation based on EM and BIC method is credible and effective in change detection from the remote sensing images,especially when the changed types are more complex." @default.
- W2391981731 created "2016-06-24" @default.
- W2391981731 creator A5001475786 @default.
- W2391981731 date "2008-01-01" @default.
- W2391981731 modified "2023-09-24" @default.
- W2391981731 title "Determination of Threshold in Change Detection Based on Histogram Approximation Using Expectation Maximization Algorithm and Bayes Information Criterion" @default.
- W2391981731 hasPublicationYear "2008" @default.
- W2391981731 type Work @default.
- W2391981731 sameAs 2391981731 @default.
- W2391981731 citedByCount "0" @default.
- W2391981731 crossrefType "journal-article" @default.
- W2391981731 hasAuthorship W2391981731A5001475786 @default.
- W2391981731 hasConcept C105795698 @default.
- W2391981731 hasConcept C11413529 @default.
- W2391981731 hasConcept C115961682 @default.
- W2391981731 hasConcept C121332964 @default.
- W2391981731 hasConcept C126255220 @default.
- W2391981731 hasConcept C153180895 @default.
- W2391981731 hasConcept C154945302 @default.
- W2391981731 hasConcept C163716315 @default.
- W2391981731 hasConcept C168136583 @default.
- W2391981731 hasConcept C182081679 @default.
- W2391981731 hasConcept C203595873 @default.
- W2391981731 hasConcept C2776330181 @default.
- W2391981731 hasConcept C33923547 @default.
- W2391981731 hasConcept C41008148 @default.
- W2391981731 hasConcept C49781872 @default.
- W2391981731 hasConcept C53533937 @default.
- W2391981731 hasConcept C61224824 @default.
- W2391981731 hasConcept C62520636 @default.
- W2391981731 hasConceptScore W2391981731C105795698 @default.
- W2391981731 hasConceptScore W2391981731C11413529 @default.
- W2391981731 hasConceptScore W2391981731C115961682 @default.
- W2391981731 hasConceptScore W2391981731C121332964 @default.
- W2391981731 hasConceptScore W2391981731C126255220 @default.
- W2391981731 hasConceptScore W2391981731C153180895 @default.
- W2391981731 hasConceptScore W2391981731C154945302 @default.
- W2391981731 hasConceptScore W2391981731C163716315 @default.
- W2391981731 hasConceptScore W2391981731C168136583 @default.
- W2391981731 hasConceptScore W2391981731C182081679 @default.
- W2391981731 hasConceptScore W2391981731C203595873 @default.
- W2391981731 hasConceptScore W2391981731C2776330181 @default.
- W2391981731 hasConceptScore W2391981731C33923547 @default.
- W2391981731 hasConceptScore W2391981731C41008148 @default.
- W2391981731 hasConceptScore W2391981731C49781872 @default.
- W2391981731 hasConceptScore W2391981731C53533937 @default.
- W2391981731 hasConceptScore W2391981731C61224824 @default.
- W2391981731 hasConceptScore W2391981731C62520636 @default.
- W2391981731 hasLocation W23919817311 @default.
- W2391981731 hasOpenAccess W2391981731 @default.
- W2391981731 hasPrimaryLocation W23919817311 @default.
- W2391981731 hasRelatedWork W1960682387 @default.
- W2391981731 hasRelatedWork W1961653035 @default.
- W2391981731 hasRelatedWork W2023689226 @default.
- W2391981731 hasRelatedWork W2024329258 @default.
- W2391981731 hasRelatedWork W2059202713 @default.
- W2391981731 hasRelatedWork W2066872387 @default.
- W2391981731 hasRelatedWork W2072256566 @default.
- W2391981731 hasRelatedWork W2076252355 @default.
- W2391981731 hasRelatedWork W2117348605 @default.
- W2391981731 hasRelatedWork W2319201918 @default.
- W2391981731 hasRelatedWork W2355537450 @default.
- W2391981731 hasRelatedWork W2392446115 @default.
- W2391981731 hasRelatedWork W2796796363 @default.
- W2391981731 hasRelatedWork W2921516248 @default.
- W2391981731 hasRelatedWork W2951650310 @default.
- W2391981731 hasRelatedWork W2819934979 @default.
- W2391981731 hasRelatedWork W2821642789 @default.
- W2391981731 hasRelatedWork W2834996104 @default.
- W2391981731 hasRelatedWork W2877133074 @default.
- W2391981731 hasRelatedWork W2927599719 @default.
- W2391981731 isParatext "false" @default.
- W2391981731 isRetracted "false" @default.
- W2391981731 magId "2391981731" @default.
- W2391981731 workType "article" @default.